Chemical fixings

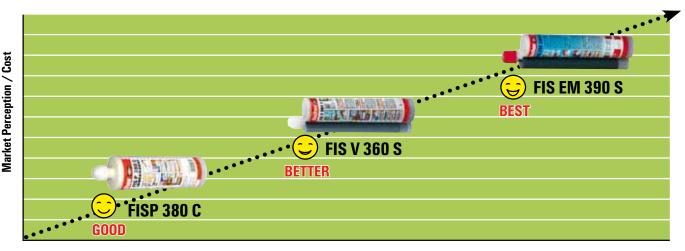
Injection mortar FIS EM	page 25
fischer Can System FCS	page 26
Highbond anchor FHB II	page 28
Highbond dynamic anchor FHB dyn	page 34
Injection mortar FIS V	page 37
Injection mortar FIS VW	page 39
Injection mortar FIS VS	page 40
Injection mortar FIS VT 380 C	
Injection mortar FIS P	page 43
Application guns / general accessories	page 45
Injection technique for masonry	page 47
Injection technique for concrete	page 52
Internal threaded anchor RG MI	page 57
Injection Set FIS	page 60
Injection technique for aircrete	page 61
Resin anchor R (Eurobond)	page 63
Hammer-set glass capsule FHP	page 68
Rebar anchor FRA	
Reinforcement bars	page 72
Remedial wall tie VBS 8	page 75

Chemical fixings, including resin capsules and injection systems in various cartridges, are experiencing an increasing

demand worldwide.

They offer solutions where other commonly used methods don't work.

fischer **develops and manufactures** all of its chemical fixings **in-house** which guarantees highest quality and performance.

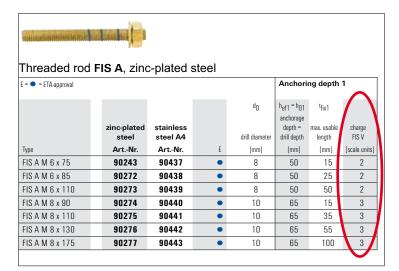

The fischer epoxy resin **FIS EM 390 S** chemical fixing solution for applications where high loads are required. Suitable for use in diamond drill holes. It provides the absolute best bond strength of all chemical solutions, including water saturated concrete.

The fischer hybrid resin **FIS V 360S** all-rounder. Safely anchors in to all substrate materials even if the installation proceedure is not perfect. It can be used in damp holes and has great performance at elevated temperatures like fire conditions.

The fischer polyester resin **FIS P 380 C** economic solution for fixing in to masonry and dry concrete. The ultimate problem solver for trades.

Product Performance

fischer Injection systems - Overview and application


Injection system	Non-cracked concrete	Masonry	Under water applcation	Diamond drilled hole	Recommended loads M8 - M30 (standard anchoring depth in concrete C20/25)
FIS V (see page 58)	Loads for 3 different anchoring depths see page 54	Loads see page 51			7.2 – 56.6 kN
FIS VS (see page 60)	Loads for 3 different anchoring depths see page 54	Loads see page 51			7.2 – 56.6 kN
FIS VW (see page 60)	Loads for 3 different anchoring depths see page 54	Loads see page 51			7.2 – 56.6 k N
FIS VT (see page 62)	Loads see page 56	Loads see page 51			6.5 – 50.9 k N
FIS P (see page 63)	Loads see page 44				5 - 26.8 kN
FIS EM (see page 65)	Loads for 3 different anchoring depths see page 55		•	•	8.4 – 109.9 kN

Installation tips for fischer injection mortars

DETERMINATION OF MORTAR QUANTITY

For the determination of the required mortar quantity for the corresponding application you need

- the net quantity per cartridge in scale units
- the data tables for threaded rods and anchor sleeves, which refer to the required mortar quantity in scale units

Example: 80 FIS A M 6 x 110 is 80 x 2 scale units = 160 net scale units is 1 cartridge FIS V 360 S is sufficient

CARTRIDGE SYSTEMS

Product	No. of scale units	Net quantity
		(reduced by 1 pc static mixer)
Injection mortar FIS HB		
FIS HB 345 S	180 scale units	170 scale units
FIS HB 150 C	70 scale units	60 scale units
Injection mortar FIS V		
FIS V 360 S	180 scale units	170 scale units
FIS VS 150 C	70 scale units	60 scale units
FIS VS 100 P	50 scale units	40 scale units

USE OF CARTRIDGES

While pressing out the mortar the piston movement can be followed on the scale and thus the required mortar quantity can be injected.

Important: Whenever using a new static mixer, the first few strokes have to be thrown away. The mortar cannot be injected into the hole until it is uniformly coloured and thus optimally mixed.

After the work is finished, you can store the remaining mortar in the cartridge with the static mixer attached and re-use it with a new static mixer later.

The above mentioned net data relates to the use of only one static mixer per cartridge and to optimal compliance with the specified hole depth and mortar requirement. You need to subtract ten scale units for each additional static mixer. The mortar requirement can be somewhat higher at the beginning with inexperienced users.

Injection mortar FIS EM

The high-performance mortar for concrete.

OVERVIEW

Injection mortar FIS EM 390 S

Static mixer FIS SE

Suitable for::

- Non-cracked concrete
- Reinforcement bars

For fixing of:

- Steel constructions
- Consoles
- Machines
- Staircases
- High-racks
- Wooden constructions
- Reinforcement bars

For load data see page 55

DESCRIPTION

- Best performance mortar in the shuttle cartridge based on epoxy resin.
- Optimum solution for concrete (anchor rods and reinforcement bars).
- Resin and hardener are stored in two separate chambers and are not mixed and activated until pushed through the static mixer.
- Partially used cartridges can easily be reused by changing the static mixer.

Advantages/Benefits

- Excellent mortar bonding ensures highest loads in concrete.
- Suitable for underwater installations.
- Suitable for diamond drilled holes.
- Expansion-free anchoring allows low axial spacings and edge distances.
- Ergonomic injection guns for quick and easy installation.

Accessories/Recommended loads

- For fixing in concrete with FIS A / RG M
- Appropriate injection gun FIS AK

TECHNICAL DATA

Injection mortar FIS EM 390 S

Static mixer FIS SE

Туре	ArtNo.	ID	contents	No. of scale divisions on cartridge	qty. per box
					pcs.
FIS EM 390 S	93049	6	1 cartridge 390 ml + 2 static mixer	180	6
FIS EM 1100 S	96865	9	1 cartridge 1100 ml + 2 static mixer	540	
FIS SE	96448	2	- static mixer	180	10

CURING TIME

Gelling and curing time of fischer FIS EM 390 S

Cartridge temperature (mortar)	Gelling time	temperature at anchoring base	Curing time	
		- 5°C-+ 5°C	80 hrs.	
+ 5°C - + 10°C	2 hrs.	+ 5°C - + 10°C	40 hrs.	
+ 10°C - + 20°C	30 min.	+ 10°C - + 20°C	18 hrs.	
+ 20°C - + 30°C	14 min.	+ 20°C - + 30°C	10 hrs.	
+ 30°C = + 40°C	7 min	+ 30°C - + 40°C	5 hrs	

The above times apply from the moment of contact between resin and hardener in the static mixer.

For installation, the cartridge temperature must be at least $+5^{\circ}$ C. With temperatures above $+30^{\circ}$ C to $+40^{\circ}$ C the cartridges have to be cooled down to $+15^{\circ}$ C or

+20°C. For longer installation times, i.e. when interruptions occur in work, the mixer should be replaced.

fischer Can System - FCS + FCS Liquid

The high-performance hybrid mortar in a can.

OVERVIEW

fischer can system FCS (trowelable), FCS-Liquid (pourable)

For fixing of:

- Steel constructions
- Consoles
- Machines
- Staircases
- High-racks
- Wooden constructions
- Reinforce porous concrete surfaces by coating
- Filling of holes and gaps in concrete surfaces
- Reconstruction of edges and corners
- Reinforcement bars

Suitable for:

Non-cracked concrete

DESCRIPTION

- Resin and hardener are stored in two separate cans.
- The cans can be used for refurbishment, restructuring of concrete and for the fixing of steel elements, like rebars, in concrete. This means to strengthen porous surfaces by using a brush as a coating, to reconstruct corners and edges by a spatula or to fill holes and gaps by pouring in the resin.
- The stiff version FCS is used to fill in horizontal or overhead holes, using a spatula.
- The liquid version FCS-Liquid is poured into vertical holes or used with a brush.

Advantages/Benefits

- · Long working time.
- Expansion-free anchoring allows low axial spacings and edge distances.
- The product can be used as an alternative for FIS EM for price sensitive markets with low labour costs.
- Can be used in diamond drill holes.
- 550ml for easy mixing by hand.

Accessories / Recommended loads

- For fixing in concrete
- For fixing in masonry
- For reinforcement bars

TECHNICAL DATA

fischer can system FCS (trowelable), FCS-Liquid (pourable)

Туре	ArtNo. ID	languages on the lable	shelf life	qty. per box
			months	pcs.
FCS	43676 -	GB, E, P	18	12
FCS Liquid	43917	GB, E, P	18	12

CURING TIME

Gelling and curing time of fischer can system FCS / FCS Liquid

Temperature	Gelling time	Curing time
+ 5°C	70 min.	60 hrs.
+ 10°C	60 min.	30 hrs.
+ 20°C	45 min.	24 hrs.
+ 30°C	30 min.	20 hrs.
+ 40°C	15 min.	16 hrs.

LOADS

Characteristic, design and recommended loads of single anchors with large spacing and edge distance¹⁾

Characteristic Loads									
Anchor type		FCS	FCS	FCS	FCS	FCS	FCS	FCS	FCS
		Ø8	Ø10	Ø12	Ø14	Ø16	Ø 20	Ø25	Ø28
Non-cracked concrete tempe	erature range -40°C to +50°C								
Tension load	C 20/25 NRk [kN]	27.0	37.9	55.7	73.8	84.3	128.5	214.7	280.5
	C 50/60 NRk [kN]	27.6	43.2	62.2	84.7	109.6	167.1	270	338.7
Shear load	≥ C 20/25 VRk [kN]	13.8	21.6	31.1	42.3	55.3	86.4	135.0	169.3
Design Loads									
Anchor type		FCS	FCS	FCS	FCS	FCS	FCS	FCS	FCS
		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28
Non-cracked concrete tempe	erature range -40°C to +50°C								
Tension load	C 20/25 NRk [kN]	15.0	21.1	30.9	41.1	46.8	71.4	119.3	155.8
	C 50/60 NRk [kN]	19.5	27.4	40.2	53.3	60.9	92.8	155.1	202.6
Shear Load	≥ C 20/25 VRk [kN]	9.2	14.4	20.7	28.2	36.9	57.6	90.0	121.0
Recommended Loads ²⁾									
Anchor type		FCS	FCS	FCS	FCS	FCS	FCS	FCS	FCS
		Ø8	Ø10	Ø12	Ø14	Ø16	Ø 20	Ø25	Ø28
Non-cracked concrete tempe	erature range -40°C to +50°C								
Tension load	C 20/25 NRk [kN]	10.7	15.0	22.1	29.3	33.5	51.0	85.2	111.3
	C 50/60 NRk [kN]	13.9	19.6	28.7	38.1	43.5	66.3	110.8	144.7
Shear load	≥ C 20/25 VRk [kN]	6.6	10.6	14.8	20.2	26.3	41.1	64.3	86.4

¹⁾ Loads apply to reinforcing steel with fyk = $500N/mm^2$, thoroughly cleaned and dry holes and temperatures in the anchoring base T \leq + 50° C.

Anchor characteristics

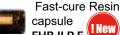
Anchor type			FCS	FCS	FCS	FCS	FCS	FCS	FCS	FCS
			Ø 8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28
Diameter of rebar		[mm]	8	10	12	14	16	20	25	28
Nominal drill hole diameter	d0	[mm]	12	14	16	18	20	25	30	35
Drill depth	h0	[mm]	80	90	110	125	125	170	240	280
Effective anchorage depth	hef	[mm]	80	90	110	125	125	170	240	280
Minimum thickness of concrete member	hmin	[mm]	120	130	150	165	165	210	280	350
Minimum spacing	smin	[mm]	50	60	70	80	85	110	140	170
Minimum edge distances	cmin	[mm]	50	60	70	80	85	110	140	170

²⁾ Material safety factors Y_M and safety factor for load Y_L = 1.4 are included. Material safety factor Y_M depends on type of anchor.

Highbond anchor FHB II

Flexible installation and highest loads in the cracked tensile zone.

OVERVIEW



FHB II-A S (standard), zinc plated steel

FHB II-A L (performance optimised). zinc-plated steel

Resin capsule FHB II-P

Injection mortar FIS HB 345 S + static mixer FIS S

Injection mortar **FIS HB 150 C**

Approved for:

 Cracked and non-cracked concrete C20/25 to C50/60

Also suitable for:

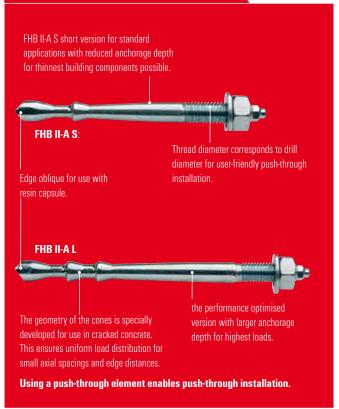
Concrete C12/15

For fixing of:

- Steel constructions
- Railings
- Consoles
- Ladders
- Wooden constructions
- Cable trays
- Machines
- Staircases

Shock approval by Civil Defense, Bonn.

- Gates
- Facades
- Window elements
- Stand-off installations


DESCRIPTION

- The bonded anchor suitable for cracked concrete consists of the Anchor rod FHB II-A L (long version) or FHB II-A S (short version) and resin capsule FHB II P / P F or Injection mortar FIS HB.
- The capsule FHB II-P contains vinyl ester resin, the capsuale FHB II- PF contains special formulated vinyl ester resin for faster curing times.
- The FIS HB injection mortar is a high-strength 2-component vinyl ester mortar.
- When using the Injection mortar FIS HB 345 S a special injection gun is needed (see pages 35). By using the injection gun the two components are mixed together and activated in the static mixer.
- Partially used cartridges can be reused, simply by changing the static mixer.
- The mortar bonds the entire surface of the anchor rod to the wall of the drilled hole and largely seals the hole.
- Anchor rod FHB II-A made of A4 stainless steel for outdoor use and in damp conditions. Highly corrosion-resistant steel C (material no. 1.4529) for applications in aggressive atmospheres (e.g. tunnels, swimming baths).

FHB II - ADVANTAGES AT A GLANCE

DESCRIPTION

- Flexible system as both injection cartridge and resin capsule can be used.
- Suitable for use in cracked tensile zone guarantees highest safety.
- Low-expansion force allows cost-efficient fixing with small edge distances and axial spacings.
- Ergonomic injection gun guarantees fast and easy installation.
- Quick installation by hand without a setting tool reduces the work involved.

Advantages/Benefits

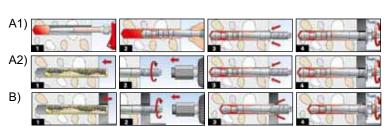
Anchor rod FHB II-A L

- Highest loads due to greater anchorage depth.
- Push-through installation by using a push-through element (when using Injection mortar FIS HB).

Anchor rod FHB II-A S

- Reduced anchorage depth for use in thin building components, therefore reduced drilling effort.
- Suitable for pre-positioned and push-through installation.

INSTALLATION

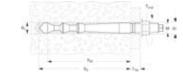

Type of installation

- Pre-positioned installation (A1/A2)
- Push-through installation (B)

Installation tips

- For sizes ≥ M20, blow out the drilled hole with compressed air (see page 32 for installation accessories).
- When over head installation for sizes ≥ M16 the use of centring wedges is recommended.

Highbond anchor FHB II-A S



When installing capsules, ensure hammer action is used.

Highbond anchor FHB II-A L

TECHNICAL DATA

	(standard), zinc-plated steel						(performance optimised), zinc-plated steel					
Туре	ArtNo.	ID	approval	drill-Ø	drill hole depth	anchorage depth	usable length	thread	width across nut	element for through fixing	suitable elements	qty. per box
			■ ETA	d_0	hO	h _{ef}	T_{fix}	М	SW	ArtNr.		
				[mm]	[mm]	[mm]	[mm]				pcs.	pcs.
FHB II-A S M10 x 60/10	97072	0		10	75	60	10	M 10	17	-	-	10
FHB II-A S M10 x 60/20	97073	7		10	75	60	20	M 10	17	-	-	10
FHB II-A S M10 x 60/60	97074	4		10	75	60	60	M 10	17	-	-	10
FHB II-A S M10 x 60/100	97206	9		10	75	60	100	M 10	17		-	10
FHB II-A S M12 x 75/10	97257	1		12	90	75	10	M 12	19	-	-	10
FHB II-A S M12 x 75/25	97268	7		12	90	75	25	M 12	19	-	-	10
FHB II-A S M12 x 75/60	97274	8		12	90	75	60	M 12	19	-	-	10
FHB II-A S M12 x 75/100	97275	5		12	90	75	100	M 12	19	-	-	10
FHB II-A S M12 x 75/165	97280	9		12	90	75	165	M 12	19	-	-	10
FHB II-A S M16 x 95/30	97281	6		16	110	95	30	M 16	24	-	-	10
FHB II-A S M16 x 95/60	97286	1		16	110	95	60	M 16	24	-	-	10
FHB II-A S M16 x 95/100	97295	3		16	110	95	100	M 16	24	-	-	10
FHB II-A S M16 x 95/165	97296	0		16	110	95	165	M 16	24	-	-	10
FHB II-A S M24 x 170/50	97297	7		25	190	170	50	M 24	36	-	-	4
FHB II-A L M8 x 60/10	97032	4		10	75	60	10	M 8	13	78230	2	10
FHB II-A L M8 x 60/30	97033	1		10	75	60	30	M 8	13	78230	5	10
FHB II-A L M8 x 60/50	97034	8		10	75	60	50	M 8	13	78230	9	10
FHB II-A L M10 x 95/10	96907	6		12	110	95	10	M 8	17	78232	1	10
FHB II-A L M10 x 95/20	96940	3		12	110	95	20	M 8	17	78232	2	10
FHB II-A L M10 x 95/60	96941	0		12	110	95	60	M 8	17	78232	4	10
FHB II-A L M10 x 95/100	96942	7		12	110	95	100	M 8	17	78232	7	10
FHB II-A L M12 x 120/10	96943	4		14	135	120	10	M 8	19	78233	2	10
FHB II-A L M12 x 120/25	96944	1		14	135	120	25	M 8	19	78234	2	10
FHB II-A L M12 x 120/60	97014	0		14	135	120	60	M 8	19	78234	3	10
FHB II-A L M12 x 120/100	97031	7		14	135	120	100	M 8	19	78234	5	10
FHB II-A L M16 x 160/30	97035	5		18	175	160	30	M 16	24	78236	2	10
FHB II-A L M16 x 160/60	97038	6		18	175	160	60	M 16	24	78236	3	10
FHB II-A L M16 x 160/100	97070	6		18	175	160	100	M 16	24	78236	5	10
FHB II-A L M20 x 210/50	97071	3		25	235	210	50	M 20	30		-	4

Highbond anchor FHB II

TECHNICAL DATA

Туре	ArtNo.	ID	approval	drill-Ø	drill hole depth	anchorage depth	usable length	thread	width across nut		suitable elements	qty. per box
			■ ETA	d_0	hO	h _{ef}	da	M	SW	ArtNo.		
				[mm]	[mm]	[mm]	[mm]				pcs.	pcs.
FHB II-A S M10 x 60/10 A4	97630	2		10	75	60	10	M 10	17	-	-	10
FHB II-A S M10 x 60/20 A4	97631	9		10	75	60	20	M 10	17	-	-	10
FHB II-A S M10 x 60/40 A4	97632	6		10	75	60	40	M 10	17	-	-	10
FHB II-A S M10 x 60/60 A4	97633	3		10	75	60	60	M 10	17	-	-	10
FHB II-A S M10 x 60/100 A4	97634	0		10	75	60	100	M 10	17	-	-	10
FHB II-A S M12 x 75/25 A4	97636	4		12	90	75	25	M 12	19	-	-	10
FHB II-A S M12 x 75/40 A4	97637	1		12	90	75	40	M 12	19	-	-	10
FHB II-A S M12 x 75/60 A4	97638	8		12	90	75	60	M 12	19	-	-	10
FHB II-A S M12 x 75/10 A4	97635	7		12	90	75	10	M 12	19	-	-	10
FHB II-A S M12 x 75/100 A4	97639	5		12	90	75	100	M 12	19	-	-	10
FHB II-A S M12 x 75/165 A4	97640	1		12	90	75	165	M 12	19	-	-	10
FHB II-A S M16 x 95/30 A4	97641	8		16	110	95	30	M 16	24	-	-	10
FHB II-A S M16 x 95/60 A4	97642	5		16	110	95	60	M 16	24	-	-	10
FHB II-A S M16 x 95/100 A4	97643	2		16	110	95	100	M 16	24	-	-	10
FHB II-A S M24 x 170/50 A4	97645	-		25	190	170	50	M 24	36			4
FHB II-A L M8 x 60/10 A4	97298	4		10	75	60	10	M 8	13	78230	2	10
FHB II-A L M8 x 60/30 A4	97299	1		10	75	60	30	M 8	13	78230	5	10
FHB II-A L M8 x 60/50 A4	97440	7		10	75	60	50	M 8	13	78230	9	10
FHB II-A L M10 x 95/10 A4	97616	6		12	110	95	10	M 10	17	78232	1	10
FHB II-A L M10 x 95/20 A4	97617	3		12	110	95	20	M 10	17	78232	2	10
FHB II-A L M10 x 95/40 A4	97618	0		12	110	95	40	M 10	17	98232	3	10
FHB II-A L M10 x 95/60 A4	97619	7		12	110	95	60	M 10	17	78232	4	10
FHB II-A L M10 x 95/100 A4	97620	3		12	110	95	100	M 10	17	78232	7	10
FHB II-A L M12 x 120/10 A4	97621	0		14	135	120	10	M 12	19	78233	2	10
FHB II-A L M12 x 120/25 A4	97622	7		14	135	120	25	M 12	19	78234	2	10
FHB II-A L M12 x 120/40 A4	97623	4		14	135	120	40	M 12	19	98234	2	10
FHB II-A L M12 x 120/60 A4	97624	1		14	135	120	60	M 12	19	78234	3	10
FHB II-A L M12 x 120/100 A4	97625	8		14	135	120	100	M 12	19	78234	5	10
FHB II-A L M16 x 160/30 A4	97626	5		18	175	160	30	M 16	24	78236	2	10
FHB II-A L M16 x 160/60 A4	97627	2		18	175	160	60	M 16	24	78236	3	10
FHB II-A L M16 x 160/100 A4	97628	9		18	175	160	100	M 16	24	78236	5	10
FHB II-A L M20 x 210/50 A4	97629	6		25	235	210	50	M 20	30	-	-	4

	ja P	(stan	dard),	or FHB n-resistan	II-A S C t steel				Highbond anchor FHB II-A L C (performance optimised), highly corrosion-resistant steel		
Туре		ArtNo.	ID	approval	drill	drill hole depth	anchorage depth	usable length	thread	width across nut	qty. per box
				■ ETA	d ₀	h _O	h _{ef}	d _a [mm]	М	SW	
FHB II-A S M10 x 60/10 C	1)	97704	0		[mm] 10	75	60	10	M 10	17	pcs. 10
FHB II-A S M10 x 60/20 C	1)	97705	7		10	75	60	20	M 10	17	10
FHB II-A S M12 x 75/40 C	1)	97707	4		12	90	75	40	M 12	19	10
FHB II-A S M12 x 75/25 C	1)	97706	1		12	90	75	25	M 12	19	10
FHB II-A S M16 x 95/30 C	1)	97708	8		16	110	95	30	M 16	24	10
FHB II-A S M16 x 95/60 C	1)	97709	5		16	110	95	60	M 16	24	10
FHB II-A S M24 x 170/50 C	1)	97711	8		25	190	170	50	M 24	36	4
FHB II-A L M8 x 60/10 C	1)	97696	6		10	75	60	10	M 8	13	10
FHB II-A L M8 x 60/30 C	1)	97697	3		10	75	60	30	M 8	13	10
FHB II-A L M10 x 95/10 C	1)	97698	8		12	110	95	10	M 8	17	10
FHB II-A L M10 x 95/20 C	1)	97699	5		12	110	95	20	M 8	17	10
FHB II-A L M12 x 120/25 C	1)	97700	2		14	135	120	25	M 8	19	10
FHB II-A L M12 x 120/40 C	1)	97701	9		14	135	120	40	M 12	19	10
FHB II-A L M16 x 160/30 C	1)	97702	2		18	175	160	30	M 16	24	10
FHB II-A L M20 x 210/50 C	1)	97703	9		25	235	210	50	M 20	30	4

¹⁾ Prices and delivery time on request.

TECHNICAL DATA

Resin capsule **FHB II-P** ID approval drill-Ø drill hole depth Art.-No. anchorage depth fits qty. per box ■ ETA h_0 h_{ef} [mm] [mm] [mm] FHB II-P 10 x 60 **96847** 5 10 75 60 FHB II-S M 10 x 60 10 FHB II-S M 12 x 75 FHB II-P 12 x 75 96848 2 12 90 75 10 **96849** 9 110 95 FHB II-P 16 x 95 16 FHB II-S M 16 x 95 10 FHB II-P 24 x 170 25 190 170 FHB II-S M 24 x 170 96851 4 FHB II-P 8 x 60 96824 10 75 60 FHB II-A L M 8 x 60 10 12 110 95 FHB II-A L M 10 x 95 $\,$ FHB II-P 10 x 95 96843 10 FHB II-P 12 x 120 96844 14 135 120 FHB II-A L M 12 x 120 10 18 175 160 FHB II-A L M 16 x 160 10 FHB II-P 16 x 160 96845

235

210

FHB II-P 20 x 210

Resin capsule **FHB II- P F**

25

96846 8

Туре	ArtNo.	ID	approval	drill-Ø	drill hole depth	anchorage depth	fits	qty. per box
			■ ETA	$\mathbf{d_0}$	ho	h _{ef}		
				[mm]	[mm]	[mm]		pcs.
FHB II-P F 10 x 60	500547	5		10	75	60	FHB II-S M 10 x 60	10
FHB II-P F 12 x 75	500548	2		12	90	75	FHB II-S M 12 x 75	10
FHB II-P F 16 x 95	500549	9		16	110	95	FHB II-S M 16 x 95	10
FHB II-P F 24 x 170	500550	2		25	190	170	FHB II-S M 24 x 170	4
FHB II-P F 8 x 60	500542	6		10	75	60	FHB II-A L M 8 x 60	10
FHB II-P F 10 x 95	500543	7		12	110	95	FHB II-A L M 10 x 95	10
FHB II-P F 12 x 120	500544	4		14	135	120	FHB II-A L M 12 x 120	10
FHB II-P F 16 x 160	500545	1		18	175	160	FHB II-A L M 16 x 160	10
FHB II-P F 20 x 210	500546	8		25	235	210	FHB II-A L M 20 x 210	4

2 Min. Cure time at 21°C+

Injection mortar FIS HB 345 S + static mixer FIS S

Injection mortar **FIS HB 150 C**

FHB II-A L M 20 x 210

4

Туре		ArtNo.	ID	approval	contents	languages on the lable	contents	qty. per box
				■ ETA				
					[ml]		[scale units]	pcs.
FIS HB 345 S	1)	33211	5		345	D, GB, F, E, NL, CZ	180	6
FIS HB 150 C	1)	77529	5		145	D, GB, F, E, NL, CZ	70	6
FIS S		61223	1	-	-		-	10

¹⁾ Incl. 2 static mixer per cartridge.

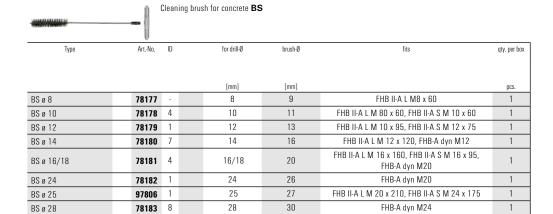
FILLING QUANTITIES AND CURING TIME

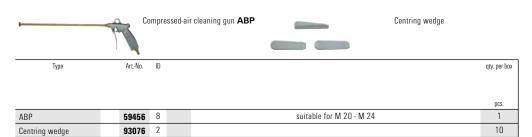
Filling quantities

Туре	Drill diameter	Drill-hole depth	Filling quantities in scale units on the
	[mm]	[mm]	cartidge lables' corresponding scale
FHB II-A S M10 x 60	10	75	3
FHB II-A S M12 x 75	12	90	4
FHB II-A S M16 x 95	16	110	8
FHB II-A S M24 x 170	25	190	26
FHB II-A L M8 x 60	10	75	3
FHB II-A L M10 x 95	12	110	5
FHB II-A L M12 x 120	14	135	7
FHB II-A L M16 x 160	18	175	13
FHB II-A L M20 x 210	25	235	33

Highbond anchor FHB II

FILLING QUANTITIES AND CURING TIME


Curing time of the Injection mortar


Curing time of the resin capsule FHB II-P
Curing time of the resin capsule FHB II-P F

Cartridge temperature	Gelling time	Temperature at	Curing time	Temperature at	Curing time	Temperature at	Curing time
(Mortar mind. + 5°C)		anchoring base		anchoring base		anchoring base	
		- 5°C - ± 0°C	360 min.	- 5°C - ± 0°C	240 min.	- 5°C 1°C	8 min.
		± 0°C - + 5°C	180 min.	± 0°C - + 10°C	45 min.	0°C - + 9°C	6 min.
+ 5°C - +20°C	15 min.	+ 5°C - +20°C	90 min.	+ 10°C - +20°C	20 min.	+ 10°C - +20°C	4 min.
+ 20°C - + 30°C	6 min.	+ 20°C - + 30°C	35 min.	≧ + 20°C	10 min.	≧ + 20°C	2 min.
+ 30°C - + 40°C	4 min.	+ 30°C - + 40°C	20 min.				
> + 40°C	2 min.	> + 40°C	12 min.				

Please note: The curing times apply for dry anchoring bases. In damp anchoring bases they should be doubled. Remove water from drill hole.

TECHNICAL DATA

Push-through element, stainless steel A4

Туре	ArtNo.	ID	approval	min max. usable length	thread	qty. per box
			■ ETA	t _{fix}	M	
				[mm]		pcs.
Push-through element M 8 x 3 A4	78230	9		3 - 6	M 8	10
Push-through element M 10 x 3 A4	78231	6		3 - 6	M 10	10
Push-through element M 10 x 8 A4	78232	3		8 - 16	M 10	10
Push-through element M 12 x 4 A4	78233	0		4 - 8	M 12	10
Push-through element M 12 x 10 A4	78234	7		10 - 20	M 12	10
Push-through element M 16 x 5 A4	78235	4		5 - 10	M 16	10
Push-through element M 16 x 10 A4	78236	1		10 - 20	M 16	10

LOADS

Mean ultimate loads, design resistant and recommended loads for single anchors of fischer Highbond anchor FHB II with large axial spacing and edge distance

								No	n-cracked conci	rete			
Anchor size					M 8 x 60	M 10 x 60	M 10 x 95	M 12 x 75	M 12 x 120	M 16 x 95	M 16 x 160	M 20 x 210	M 24 x 170
Type of anchor					AL	AS	AL	AS	AL	AS	AL	AL	AS
Effective anchorage depth		h _{ef}	[mm]		60	60	95	75	120	95	160	210	170
Drill hole depth		h ₀ ≧	[mm]		75	75	110	90	135	110	175	235	190
Drill hole diameter		dn	[mm]		10	10	12	12	14	16	18	25	25
Mean ultimate loads N _U and V _U [kN]													
Tensile	0°	N _{II}	[kN]	gvz/A4/C	21.9*	21.9*	34.4*	34.4*	49.8*	61.1*	96.6*	137.6*	128.5*
			[kN]	gvz	15.0*	21.3*	24.9*	29.8*	42.4*	61.6*	72.6*	116.1*	127.1*
Shear	90°	Vu	[kN]	A4	21.4*	26.9*	32.9*	39.1*	49.0*	77.9*	89.2*	133.4*	151.6*
		u_	[kN]	С	20.5*	30.2*	33.9*	43.8*	48.8*	85.8*	91.7*	148.4*	175.7*
Design loads N _{Rd} and V _{Rd} [kN]													
Tensile	0°	N _{II}	[kN]	gvz/A4/C	14.6	14.6	22.9	21.8	33.2	31.1	64.4	91.7	74.5
			[kN]	gvz	10.6	15.0	16.6	21.8	24.2	40.6	45.0	70.3	91.4
Shear	90°	٧ _u	[kN]	A4	11.7	18.6	18.6	27.0	27.0	50.2	50.2	78.3	99.6
		u_	[kN]	С	11.7	18.6	18.6	27.0	27.0	50.2	50.2	78.3	112.8
Recommended loads N _{rec} and V _{rec} [kN	N]												
Tensile	0°	N _{rec}	[kN]	gvz/A4/C	10.4	10.4	16.4	15.6	23.7	22.2	46.0	65.5	53.2
		100	[kN]	gvz	7.5	10.7	11.9	15.6	17.3	29.0	32.2	50.2	65.3
Shear	90°	V _{rec}	[kN]	A4	8.3	13.3	13.3	19.3	19.3	35.8	35.8	55.9	71.1
			[kN]	С	8.3	13.3	13.3	19.3	19.3	35.8	35.8	55.9	80.6
Recommended bending moment M _{rec}	[Nm]												
100		M _{rec}	[Nm]	gvz/A4/C	17.1	34.3	34.3	60.0	60.0	152.0	152.0	296.6	513.1
Component dimensions, minimum axial	l spacir	ngs and	edge dist	ances									
Min. axial spacing ¹⁾		Smin	[mm]		40	40	40	40	50	50	70	90	80
Min. edge distance ¹⁾		Cmin	[mm]		40	40	40	40	50	50	70	90	80
Min. structural component thickness		h _{min}	[mm]		100	100	140	120	170	150	220	280	240
Clearance-hole in fixture to be attached		d _f	[mm]		9	12	12	14	14	18	18	22	26
Required torque		T _{inst}	[Nm]		15	15	20	30	40	50	60	100	100

						Cracked concrete							
Anchor size					M 8 x 60	M 10 x 60	M 10 x 95	M 12 x 75	M 12 x 120	M 16 x 95	M 16 x 160	M 20 x 210	M 24 x 170
Type of anchor					AL	AS	AL	AS	AL	AS	AL	AL	AS
Effective anchorage depth		h _{ef}	[mm]		60	60	95	75	120	95	160	210	170
Drill hole depth	h	0 ≧	[mm]		75	75	110	90	135	110	175	235	190
Drill hole diameter		do	[mm]		10	10	12	12	14	16	18	25	25
Mean ultimate loads N _u and V _u [kN]													
Tensile	0°	N _{II}	[kN]	gvz/A4/C	19.6	21.9*	34.4*	30.7	49.8*	43.8	95.6	137.6*	104.7
			[kN]	gvz	15.0*	21.3*	24.9*	29.8*	42.4*	61.6*	72.6*	116.1*	127.1*
Shear	90°	٧,,	[kN]	A4	21.4*	26.9*	32.9*	39.1*	49.0*	77.9*	89.2*	133.4*	151.6*
		ŭ_	[kN]	С	20.5*	30.2*	33.9*	43.8*	48.8*	85.8*	91.7*	148.4*	175.7*
Design loads N _{Rd} and V _{Rd} [kN]													
Tensile	0°	N,,	[kN]	gvz/A4/C	11.2	11.2	22.2	15.6	31.5	22.2	48.6	73.0	53.2
		u	[kN]	gvz	10.6	15.0	16.6	21.8	24.2	40.6	45.0	70.3	91.4
Shear	90°	٧,, -	[kN]	A4	11.7	18.6	18.6	27.0	27.0	44.4	50.2	78.3	99.6
		u_	[kN]	С	11.7	18.6	18.6	27.0	27.0	44.4	50.2	78.3	106.4
Recommended loads N _{rec} and V _{rec} [kN	I]												
Tensile	0° N	V _{rec}	[kN]	gvz/A4/C	8.0	8.0	15.9	11.1	22.5	15.9	34.7	52.2	38.0
		100	[kN]	gvz	7.5	10.7	11.9	15.6	17.3	29.0	32.2	50.2	65.3
Shear	90° \	V _{rec} _	[kN]	A4	8.3	13.3	13.3	19.3	19.3	31.7	35.8	55.9	71.1
		.00_	[kN]	С	8.3	13.3	13.3	19.3	19.3	31.7	35.8	55.9	76.0
Recommended bending moment M _{rec} [[Nm]												
		И _{rec}	[Nm]	gvz/A4/C	17.1	34.3	34.3	60.0	60.0	152.0	152.0	296.6	513.1
Component dimensions, minimum axial			l edge dist	ances									
Min. axial spacing ¹⁾	S	min	[mm]		40	40	40	40	50	50	70	90	80
Min. edge distance ¹⁾		min	[mm]		40	40	40	40	50	50	70	90	80
Min. structural component thickness		min	[mm]		100	100	140	120	170	150	220	280	240
Clearance-hole in fixture to be attached		d _f	[mm]		9	12	12	14	14	18	18	22	26
Required torque	T	inst	[Nm]		15	15	20	30	40	50	60	100	100

^{*} steel failure

All values apply for concrete C 20/25 without edge or spacing influence.

Design loads: material safety factor γ_M is included. Material safety factor γ_M depends on type of anchor.

Recommended loads: material safety factor γ_M and safety factor for load γ_L = 1.4 are included.

¹⁾ For min. axial spacing and min. edge distance the above described loads have to be reduced! (See "Technical Handbook" or design software "CC-Compufix")

Highbond anchor dynamic FHB dyn

The new performance class amongst dynamic anchors.

OVERVIEW

Highbond anchor dynamic FHB-A dyn

Highbond anchor dynamic

FHB-A dyn V

Injection mortar **FIS HB 150 C**

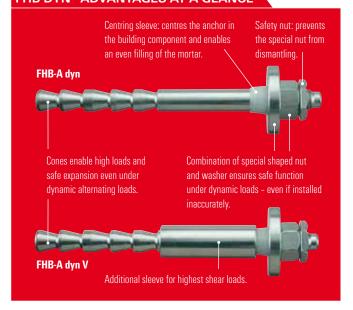
Injection mortar FIS HB 345 S + static mixer FIS S

Approved for:

 Cracked and non-cracked concrete ≥ C20/25 and maximum C50/60

For fixing of:

- Swinging cranes
- Rails for elevators
- Steel ventilators
- Bridges for traffic signs
- Antennas
- Machines e.g. welding robots, etc.


DESCRIPTION

- The injection system suitable for cracked concrete consists of a fischer Highbond dynamic anchor stud and Injection mortar FIS HB.
- The FIS HB injection mortar is a high-strength 2-component vinyl ester mortar.
- When ejected by using the special injection gun (see pages 45), the two components are mixed together and activated in the static mixer.
- Partially used cartridges can be re-used, simply by changing the static mixer.
- The mortar bonds the entire surface of the anchor rod to the wall of the drilled hole and largely seals the hole.
- Anchor rod FHB-C made of highly corrosion-resistant steel C (material no. 1.4529) for outdoor use, in damp conditions and in high chloride atmospheres, e.g. tunnels.

Advantages/Benefits

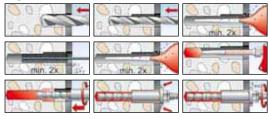

- Use in applications with dynamic alternating loads.
- Conventional setting method as with the Injection system
- Simple push-through installation for optimum handling.
- Reliable controlled expansion into cracked concrete due to conical shape of the anchor rod.
- · Low-expansion function allows cost-efficient fixing with small axial spacings and edge distances.
- The FHB-A dyn V anchor rod has the same properties as the FHB-A dyn anchor rod but is optimised for shear forces.
- The FIS HB mortar fills in the annular gap in the attached item during setting, thereby ensuring optimal load distribution and the capability to take dynamic alternating loads.

FHB DYN - ADVANTAGES AT A GLANCE

INSTALLATION

Type of installation

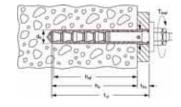
Push-through installation


Installation tips

- With FHB-A dyn 20 and 24, blow out the drilled hole with compressed air (see page 32)
- Brush BS and Compressed-air cleaning gun ABP see page 32.

Highbond anchor dynamic FHB-A dyn

Highbond anchor dynamic FHB-A dyn V


TECHNICAL DATA

Highbond anchor dynamic

FHB-A dyn

Туре	ArtNo.	ID	approval	drill-Ø	drill hole depth	anchorage depth	min max. usable length	drill-hole diameter in object	width across nut	qty. per box
			DIBt	d_0		h _{ef}	t _{fix}	d_{f}	○SW	
				[mm]	[mm]	[mm]	[mm]	[Ø mm]		pcs.
FHB-A dyn 12 x 100/25	92018	3	•	14	130	100	8 - 25	15	19	10
FHB-A dyn 12 x 100/50	92019	0	•	14	155	100	8 - 50	15	19	10
FHB-A dyn 16 x 125/25	92020	6	•	18	155	125	10 - 25	19	24	10
FHB-A dyn 16 x 125/50	92036	7	•	18	180	125	10 - 50	19	24	10
FHB-A dyn 20 x 170/50	92037	4	•	24	225	170	12 - 50	25	30	10
FHB-A dyn 24 x 220/50	92038	1	•	28	275	220	14 - 50	29	36	5

Highbond anchor dynamic

FHB-A dyn V

	-									
Туре	ArtNo.	ID	approval	drill-Ø	drill hole depth	anchorage depth	min max. usable length	drill-hole diameter in object	width across nut	qty. per box
			DIBt	$\mathbf{d_0}$		h _{ef}	t _{fix}	d_f	○ SW	
				[mm]	[mm]	[mm]	[mm]	[Ø mm]		pcs.
FHB-A dyn 12 x 100/50 V	92039	8	•	20 ¹⁾ 14 ²⁾	85 ¹⁾ 160 ²⁾	105	8 - 50	21	19	10
FHB-A dyn 16 x 125/50 V	92040	4	•	28 ¹⁾ 18 ²⁾	100 ¹⁾ 185 ²⁾	130	10 - 50	29	24	10

- 1) Stepped drill hole 1
- 2) Stepped drill hole 2

Highbond anchor dynamic
FHB-A dyn C highly corrosionresistant steel 1.4529

Туре	ArtNo.	ID	approval	drill	drill hole depth	anchorage depth	min max. usable	drill-hole diameter	width across nut	qty. per box
							length	in object		
			DIBt	$\mathbf{d_0}$		h _{ef}	t _{fix}	d_f	○ SW	
				[mm]	[mm]	[mm]	[mm]	[Ø mm]		pcs.
FHB-A dyn 16 x 125/50 C	93445	6	•	18	180	125	10 - 25	19	24	10

Highbond anchor dynamic FHB dyn

TECHNICAL DATA

Injection mortar FIS HB 345 S + static mixer FIS S

Injection mortar FIS HB 150 C

Туре		ArtNo.	ID.	approval	contents	languages on the lable	contents	qty. per box
1,100		711.110.		арріотаі	ontono	tunguages on the tubis	Somethic	qty. por box
				DIBt				
					[ml]		[scale units]	pcs.
FIS HB 345 S	1)	33211	5	•	345	D, GB, F, E, NL, CZ	180	6
FIS HB 150 C	1)	77529	5	•	145	D, GB, F, E, NL, CZ	70	6
FIS S		61223	1		-		-	10

¹⁾ incl. 2 static mixer per cartridge.

FILLING QUANTITIES AND CURING TIME

Filling quantities

Туре	Filling quantities in scale units on the cartridge labels ' corresponding scale
FHB-A dyn 12 x 100 / 25	7
FHB-A dyn 12 x 100 / 50	8
FHB-A dyn 16 x 125 / 25	9
FHB-A dyn 16 x 125 / 50	10
FHB-A dyn 20 x 170 / 50	23
FHB-A dyn 24 x 220 / 50	38
FHB-A dyn 12 x 100 / 50 V	12
FHR-A dvn 16 x 125 / 50 V	20

Curing times see page 31.

LOADS

Mean ultimate loads and recommended loads for single anchors of fischer Highbond-Anchor dynamic FHB dyn with large axial spacing and edge distance.

							Non-crack	ed concrete					Cracked	concrete		
Anchor size					FHB dyn 12 x 100	FHB dyn 12 x 100 V	FHB dyn 16 x 125	FHB dyn 16 x 125 V	FHB dyn 20 x 170	FHB dyn 24 x 220	FHB dyn 12 x 100	FHB dyn 12 x 100 V	FHB dyn 16 x 125	FHB dyn 16 x 125 V	FHB dyn 20 x 170	FHB dyn 24 x 220
Effektive anchorage depth		h _{ef}	[mm]		100	105	125	130	170	220	100	105	125	130	170	220
Drill hole depth		h ₀ ≧	[mm]		105	110	130	135	175	225	105	110	130	135	175	225
Drill hole diameter		do	[mm]		14	14	18	18	24	28	14	14	18	18	24	28
Mean ultimate loads N_u and V_u [kN]																
Tensile 1)	0°	Nu	[kN]	gvz	23.1	23.1	35.0	35.0	46.0	46.0	20.7	20.7	35.0	35.0	46.0	46.0
Shear 1)	90°	V _u	[kN]	gvz	10.8	15.0	21.0	26.0	26.5	36.5	10.8	15.0	21.0	26.0	26.5	36.5
Recommended loads Δ N $_{rec}$ and Δ V $_{rec}$	Recommended loads Δ N _{rec} and Δ V _{rec} [kN] as a single fixing															
Tensile 1)	0°	N _{rec}	[kN]	gvz	13.6	13.6	19.8	19.8	23.5	28.9	11.7	11.7	19.8	19.8	23.5	28.9
			[kN]	С	-	-	15.6	-	-	-	-	-	15.6	-	-	-
Shear 1)	90°	V_{rec}	[kN]	gvz/C	6.7	9.6	11.9	17.0	17.0	22.2	6.7	9.6	11.9	17.0	17.0	22.2
Recommended loads Δ N _{rec} and Δ V _{rec}	[kN] i	n a grou	ıp													
Tensile	0°	N_{rec}	[kN]	gvz	10.9	10.9	15.8	15.8	18.8	23.1	9.4	9.4	15.8	15.8	18.8	23.1
			[kN]	С	-	-	12.4	-	-	-	_	-	12.4	-	-	-
Shear	90°	V_{rec}	[kN]	gvz/C	5.1	7.4	9.1	13.1	13.1	17.1	5.1	7.4	9.1	13.1	13.1	17.1
Component dimensions, minimum axial	spacir	gs and	edge di	stances												
Min. axial spacing 2)		Smin	[mm]		100	100	100	100	150	180	100	100	100	100	150	180
Min. edge distance 2)		c _{min}	[mm]		100	100	100	100	150	180	100	100	100	100	150	180
Min. structural component thickness		h _{min}	[mm]		200	200	250	250	340	440	200	200	250	250	340	440
Clearance hole in fixture to be attached		d _f	[mm]		15	21	19	29	25	29	15	21	19	29	25	29
Required torque		T _{inst}	[Nm]		40	40	60	60	100	120	40	40	60	60	100	120

 $^{^{1)}}$ The recommended loads are valid for the whole amplitude for more than 2 x 10^6 load cycles.

All load values apply for concrete C 20/25 without edge or spacing influence.

Recommended loads: material safety factor γ_M and safety factor for load γ_L = 1.0 for single fixings and 1.25 for groups under tension load and 1.3 for groups under shear load are included. Material safety factor γ_M depends on type of anchor.

The conditions of application differ from those given in the German Approval. For further detailed information about the German Approval please contact the fischer technical service department.

FIRE PREVENTION

For min. axial spacing and min. edge distance the above described loads have to be reduced! (see design software "CC-Compufix")

Injection mortar FIS V

The high-performance hybrid mortar in the shuttle cartridge.

OVERVIEW

Injection mortar FIS V 360 S, styrene free

Static mixer FIS S

Injection mortar FIS V 950 S, styrene free

Approvals:

- European Technical Approval Option 7 in conjunction with Threaded rods FIS A resp. RG M for non-cracked concrete.
- German approval (DIBt) in conjunction with injection anchor sleeve FIS H M and injection anchor parts FIS G and FIS E for solid and hollow bricks (solid brick also without anchor sleeve).
- German approval (DIBt) for aerated cement in conjunction with cone drill PBB, centering sleeve PBZ and Threaded rod FIS G.
- German approval (DIBt) for reinforcement bars.
- German approval (DIBt) for Remedial wall tie VBS 8.
- German approval (DIBt) for Weather facing renovation system FWS.
- ICC-Approval for threaded rods and rebars

European Technical Approvation of the resistance classification

For fixing of:

- Steel constructions
- Railings
- Hand-rails
- Consoles
- Ladders
- Machines
- Cable trays
- StaircasesGates
- GalesFacades
- Window elements
- High racks
- Canopies
- · Stand-off installations

For load data see page 54

DESCRIPTION

- Styrene-free, quick-curing high-performance hybrid mortar (contains vinyl ester resin and cement).
- Resin and cement as well as water and hardener are stored in two separate chambers and are not mixed and activated until pushed through the static mixer.
- Partially-used cartridges can easily be reused by changing the static mixer.

Advantages/Benefits

- High-performance hybrid mortar for high loads in almost all building materials.
- Universal fixing system for a broad range of applications on building sites.
- Expansion-free anchoring allows low axial spacings and edge distances.
- Extensive range of accessories for a wide variety of applications.
- Ergonomic injection guns for quick and easy installation.
- A variety of approvals cover many applications in nearly all building material and guarantee maximum safety.
- First injection system world-wide with approvals for concrete, reinforcement bars, solid bricks, perforated bricks and aircrete.

Accessories / Recommended loads

- · For fixing in concrete
- For fixing in masonry
- For fixing in aerated concrete
- For reinforcement bars
- Appropriate injection guns

STANDARDS

TECHNICAL DATA

Injection mortar **FIS V 360 S**, styrene free

Injection mortar **FIS V 950 S**, styrene free

Туре	ArtNo.	ID	appr	ovals	contents	languages on the lable	shelf life	qty. per box
			DIBt	■ ETA				
							months	pcs.
FIS V 360 S	94405	9	•	-	1 cartridge 360 ml + 2 static mixer	-	18	6
FIS V 950 S	17101	1	•	•	1 cartridge 950 ml + 2 static mixer	D, GB, F, NL, I, E, P, JP, PRC	18	6
FIS S	61223	1			10 static mixer FIS V 360 S	-	-	10

SHALL

FIS V 360 S HWK small

Туре	ArtNo.	ID	contents	languages on the lable	qty. per box
					pcs.
FIS V 360 S HWK big	96554	2	20 x FIS V 360 S cartridges + 360 ml/560 g, 40 x static mixers	D, GB, F, NL,	-
FIS V 360 S HWK small	92430	3	10 x FIS V 360 S cartridges + 360 ml/560 g, 20 x static mixers	D, GB, F, NL,	-

CURING TIME

Gelling and curing time of fischer FIS V

Cartridge temperature (mortar)	Gelling time	Temperature at anchoring base	Curing time
		- 5°C - ± 0°C	24 hrs.
		± 0°C-+ 5°C	3 hrs.
+ 5°C - + 10°C	13 min.	+ 5°C - + 10°C	90 min.
+ 10°C - + 20°C	5 min.	+ 10°C - + 20°C	60 min.
+ 20°C - + 30°C	4 min.	+ 20°C - + 30°C	45 min.
+ 30°C - + 40°C	2 min.	+ 30°C - + 40°C	35 min.

The above times apply from the moment of contact between resin and hardener in the static mixer.

For installation, the cartridge temperature must be at least +5°C. For longer installation times, i.e. when interruptions occur in work, the mixer should be replaced.

Injection mortar FIS VW - Winter Resin

The high-performance hybrid mortar in the shuttle cartridge.

OVERVIEW

Injection mortar **FIS VW**, styrene free

Express cure resin at very low temps ie. can be installed at -15°C!

Approvals:

For fixing of:

- Steel constructions
- Railings
- Hand-rails
- Consoles
- Ladders
- Machines
- Cable trays
- Staircases
- Gates
- Facades
- Window elements
- High racks
- Canopies
- Stand-off installations

For load data see page 54

DESCRIPTION

- Styrene-free, quick-curing high-performance hybrid mortar (contains vinyl ester resin and cement).
- Resin and cement as well as water and hardener are stored in two separate chambers and are not mixed and activated until pushed through the static mixer.
- Partially-used cartridges can easily be reused by changing the static mixer.

Advantages/Benefits

- High-performance hybrid mortar for high loads in almost all building materials.
- Universal fixing system for a broad range of applications on building sites.
- Expansion-free anchoring allows low axial spacings and edge distances.
- Extensive range of accessories for a wide variety of applications.
- Ergonomic injection guns for quick and easy installation.
- A variety of approvals cover many applications in nearly all building material and guarantee maximum safety.
- The mortar can be used up to a anchor temperature of -15°C and a cartridge temperature of 0°C.

TECHNICAL DATA

Injection mortar FIS VW 360 S,

styrene free

Туре	ArtNo.	ID	approvals	contents	languages on the lable	shelf life	qty. per box
			● DIBt ■ ETA				
						months	pcs.
FIS VW 360	90753			1 cartridge 360 ml + 2 static mixer	D, GB, I, F, NL, E	12	6
FIS S	61223	1		10 static mixer FIS V 360 S	-	-	10


CURING TIME

Gelling and curing time of fischer FIS VW

Cartridge temperature (mortar)	Curing time (FIS V comparison)	Setting time (FIS V comparison)
-15°C to -10°C	12 h (-)	
-10°C to -5°C	8 h (-)	
-5°C to 0°C	3 h (24 h)	
0°C to +5°C	90 min (3 h)	5 min (-)
+5°C to +10°C	45 min (90 min)	3 min (13 min)
+10°C to +20°C	30 min (60 min)	1 min (5 min)

The above times apply from the moment of contact between resin and hardener in the static mixer

For installation, the cartridge temperature must be at least +0°C. For longer installation times, i.e. when interruptions occur in work, the mixer should be replaced.

Injection mortar FIS VS

The expansion-free resin anchorage for small applications.

OVERVIEW

Injection mortar FIS VS with static mixer

Power-Injection FIS VS 100 P

Suitable for:

- Non-cracked concrete
- Prestressed hollow-core concrete slabs
- Solid brick
- Solid sand-lime brick
- Solid block made from lightweight concrete
- Aerated concrete
- Vertically perforated brick
- Perforated sand-lime brick
- Slabs made of bricks, concrete blocks, etc.
- Hollow blocks
- Porous lightweight concrete

For fixing of:

- Steel constructions
- Railings
- Hand-rails
- Consoles

- Ladders
- Cable trays
- Machines
- Awnings
- Staircases
- · Stall Cases
- High-racks
- Gates
- Facades
- Window elements
- high racks
- Canopies
- Stand-off installations

For load data see page 54

DESCRIPTION

- Styrene-free, quick-curing high-performance hybrid mortar (contains vinyl ester resin and cement) in a shuttle cartridge for concrete and masonry.
- FIS VS 100 P is fitted with a screw-in plunger and ejected by hand.
- FIS VS 150 C can be extruded by using an application gun for sealants.
- Specially designed with longer gelling time and lower application pressure.
- Resin and cement as well as water and hardener are stored in two separate chambers and are not mixed and activated until pushed through the static mixer.
- Partially-used cartridges can easily be re-used by changing the static mixer.

Advantages/Benefits

- High-performance hybrid mortar for highest loads in almost all building materials.
- Suitable for use with reinforcement bars. Universal fixing system for a broad range of applications on building sites.
- Longer gelling time for simple installation and for high ambient temperatures.
- Expansion-free anchoring allows low axial spacings and edge distances.
- Extensive range of accessories for a wide variety of applications.
- Using application guns for sealants saves money (FIS VS 150 C and FIS VS 300 T)

Accessories

- For fixing in concrete
- For fixing in masonry
- For fixing in aerated cement

INSTALLATION

Installation tips

- Before using the mortar, the instruction sheet needs to be read carefully.
- For fixings in solid building materials, the drill-hole needs to be cleaned thoroughly.
- If there is a damp drill-hole during installation, the load bearing capacity might be reduced.

TECHNICAL DATA

Injection mortar FIS VS 150 C

Power-Injection FIS VS 100 P

Heavy-duty fixing set **SBS-Set**

Туре		ArtNo.	ID	languages on the lable	contents	contents	qty. per box
					[scale units]		pcs.
FIS VS 150 C	1)	45302	5		70	1 Injection mortar cartridge FIS VS 150 C + 2 static mixer	6
FIS VS 100 P	1)	72525	2		50	1 cartridge FIS VS 100 P + 2 static mixer	6
FIS VS 300 T SBS	1)	97807	8	D	150	1 cartridge FIS VS 300 T + 6 threaded rods M 10 x 160 gvz + 6 injection anchor sleeve FIS H 16 x 130 + 2 static mixer	5
FIS S		61223	1	-	=	10 static mixer	10

¹⁾ styrene free

CURING TIME

Gelling and curring time of fischer FIS VS

Cartridge temperature (mortar)	Gelling time	Temperature at anchoring base	Curing time	
		± 0°C-+ 5°C	6 hrs.	
+ 5°C - + 10°C	20 min.	+ 5°C - + 10°C	3 hrs.	
+ 10°C - + 20°C	10 min.	+ 10°C - + 20°C	120 min.	
+ 20°C - + 30°C	6 min.	+ 20°C - + 30°C	60 min.	
+ 30°C - + 40°C	4 min.	+ 30°C - + 40°C	30 min.	

The above times apply from the moment of contact between resin and hardener in the static mixer.

For installation, the cartridge temperature must be at least +5°C. For longer installation times, i.e. when interruptions occur in work, the mixer should be replaced.

Injection mortar FIS VT 380 C

The expansion-free anchoring in the coaxial cartridge based on vinyl ester resin.

OVERVIEW

Injection mortar FIS VT 380 C

Suitable for:

- Non-cracked concrete
- Prestressed hollow-core concrete slabs
- Solid brick
- Solid sand-lime brick
- Solid block made from lightweigth concrete
- Autoclaved lightweight concrete, aircrete
- Vertically perforated brick
- Perforated sand-lime brick
- Slabs made of bricks, concrete blocks, etc.
- Hollow blocks
- No fines lightweight concrete

For fixing of:

- Steel constructions
- Railings
- Hand-rails,
- Consoles,
- Ladders
- · Cable trays
- Machines
- Staircases
- Gates
- Facades
- Window elements
- High racks
- Canopies
- Stand-off installations

For load data see page 56

DESCRIPTION

- Styrene-free, quick-curing vinyl ester resin in the coaxial cartridge for concrete and masonry.
- Resin and hardener are stored in two separate chambers and are not mixed and activated until pushed through the static mixer.
- Partially used cartridges can easily be reused by changing the static mixer.

Recommended loads

- for fixing in non-cracked concrete with the FIS A or RG M threaded rod, the loads are about 10% lower than with the FIS V injection mortar
- for fixing in masonry
- · for fixing in aerated cement

Advantages/Benefits

- Good performance in almost all building materials.
- Universal fixing system for a broad range of applications on building sites.
- Expansion-free anchoring allows low axial spacing and edge distances.
- Extensive range of accessories for a wide variety of applications.

Accessories

- for fixing in concrete
- · for fixing in masonry
- · for fixing in aerated cement

TECHNICAL DATA

FIS VT 380 C

туре	ArtNo.	ID	languages on the label	CONTENTS	qty. per box
					pcs.
FIS VT 380 C	59118	5	GB, I, P, E, PRC, JP	1 Injection mortar cartridge 380 ml + 1 static mixer	12
FIS S	61223	1	-	10 static mixer FIS V 360 S	10

CURING TIME

Gelling and curing time of fischer FIS VT 380 C

Cartridge temperature	Gelling time	temperature at	Curing time	
(mortar)		anchoring base		
		- 5°C − ± 0°C	6 hrs.	
		± 0°C-+ 5°C	3 hrs.	
+ 5°C-+10°C	13 min.	+ 5°C - + 10°C	90 min.	
+ 10°C - + 20°C	5 min.	+ 10°C − + 20°C	60 min.	
+ 20°C - + 30°C	4 min.	+ 20°C − + 30°C	45 min.	
+ 30°C - + 40°C	2 min.	+ 30°C - + 40°C	30 min.	

The above times apply from the moment of contact between resin and hardener in the static mixer.

For installation, the cartridge temperature must be at least +5°C. For longer installation times, i.e. when interruptions occur in work, the mixer should be replaced.

Injection mortar FIS P

The expansion-free polyester resin anchoring sytem for masonry.

OVERVIEW

Injection mortar **FIP 300 SF** Styrene Free

Injection mortar FIS P 380 C Styrene Free

Injection mortar FIP C 700 Styrene Free

Suitable for:

- Solid brick
- Solid sand-lime brick
- Solid block made from lightweight concrete
- Autoclaved lightweight concrete, aircrete
- Vertically perforated brick
- Perforated sand-lime brick
- Hollow blocks
- Concrete

For fixing of:

- Steel constructions
 - Railings
- Hand-rails
- Consoles
- Ladders
- Cable trays
- Machines
- Staircases
- Gates
- Facades
- Window elements
- High racks
- Canopies
- Stand-off installations

DESCRIPTION

- Styrene-free polyester resins for fixings into masonry building
- Resin and hardener are stored in two separate chambers and are not mixed and activated until pushed through the static mixer.
- Partially-used cartridges can easily be reused by changing the static mixer.
- FIP 300 SF can be extruded by using a conventional application gun.
- FIS P 380 C in coaxial cartridge is extruded by using the 2 component FIPC applicator gun.
- FIPC 700 F-bond can be extruded using the 2 component FIPC applicator gun.

Advantages/Benefits

- Well performance in masonry building materials.
- Expansion-free anchoring. allows low axial spacing and edge distances.
- Extensive range of accessories for a wide variety of applications.

Accessories

- for fixing in masonry
- for fixing in aerated cement

Recommended loads

- for fixing in masonry
- · for fixing in aerated cement

TECHNICAL DATA

Type

Injection mortar **FIP 300 SF** styrene free

Art.-No.

Injection mortar FIP C 700. styrene free

Injection mortar FIS P 380 C styrene free

qty. per box

				DCS.
FIP 300 SF	98184	2	1 cartridge 300 ml + 1 static mixer	6
FIS P 380 C	59234	2	1 cartridge 380 ml + 1 static mixer	6
FIP C 700	98183	-	1 cartridge 400 ml + 1 static mixer	12
FIS S	61223	1	10 static mixer	10

^{*} Non critical applications

Injection mortar FIS P

CURING TIME

Gelling and curing time of fischer FIP 300 SF

Cartridge temperature	Gelling time	Temperature at anchor base	Curing time
(mortar)			
5°C	15 - 30 min.	5°C	180 min.
10°C	10 - 20 min.	10°C	120 min.
20°C	5 - 10 min.	20°C	60 min.
30°C	3 - 6 min.	30°C	45 min.

Gelling and curing time of fischer FISP 380 C

Cartridge temperature	Gelling time	Temperature at anchor base	Curing time
(mortar)			
-	-	-5°C	360 min.
	-	0°C	180 min.
5°C	13 min.	5°C	90 min.
10°C	9 min.	10°C	45 min.
20°C	5 min.	20°C	30 min.
30°C	4 min.	30°C	25 min.

Gelling and curing time of fischer FIP C 700

Cartridge temperature (mortar)	Gelling time	Temperature at anchor base	Curing time
5°C	15 - 30 min.	5°C	180 min.
10°C	10 - 20 min.	10°C	120 min.
20°C	5 - 10 min.	20°C	60 min.
25°C	3½ - 7 min.	25°C	28 min.
30°C	3 - 6 min.	30°C	45 min.

LOADS

Recommended loads for fischer FIP 300 SF

Description Size		Concrete Strength	M8	M10	M12	M16	M20	M24
Recommended tensile load N _{rec.} ¹⁾	(kN)	30N/mm ²	5.0	8.2	10.4	14.7	21.6	26.8
Characteristic axial spacing	S _{cr} ≥	mm	80	90	110	125	170	210
Characteristic edge spacing	C _{cr} ≥	mm	120	135	165	190	255	315
Maximum torque	T _{inst}	Nm	10	20	40	80	150	200

 $^{^{\}rm 1)}$ Recommended $\rm N_{\rm FEC}$ applicable only when the specified edge and axial spacing are maintained.

Recommended loads for fischer FIP 380 C

Description Size		Concrete Strength	М8	M10	M12	M16	M20	M24
Recommended tensile load N _{rec.} ¹⁾	(kN)	25N/mm ²	4.2	6.3	8.6	12.0	18.8	24.0
Characteristic axial spacing	S _{cr} ≥	mm	80	90	110	125	170	210
Characteristic edge spacing	C _{cr} ≥	mm	120	135	165	190	255	315
Maximum torque	T _{inst}	Nm	10	20	40	80	150	200

 $^{^{\}rm 1)}$ Recommended $\rm N_{\rm rec}$ applicable only when the specified edge and axial spacing are maintained.

Recommended loads for fischer FIP C 700

					Non-cracked 30N,	mm² concrete		
Anchor Size			M8	M10	M12	M16	M20	M24
Recommended load	N _{rec}	kN	4.15	7.70	7.96	12.30	17.81	22.00
Characteristic axial spacing	S _{cr}	mm	160	180	220	250	340	420
Characteristic edge spacing	C _{cr}	mm	80	90	110	125	170	210
Maximum torque	T _{inst}	Nm	10	20	40	80	150	200

The loading figures quoted are for concrete with compressive strength of 30 N/mm²

²¹All tests were performed using grade 8.8 studs. All concrete was in dry condition and holes were thoroughly cleaned as per our installation recommendation.

Concrete strength were determined using 100mm cubes.

²¹All tests were performed using grade 5.8 studs. All concrete was in dry condition and holes were thoroughly cleaned as per our installation recommendation. Concrete strength were determined using 100mm cubes.

Application guns / general accessories

TECHNICAL DATA

Application gun **FIS AK**

Туре	ArtNo. ID	adapted for	qty. per box
			DCS.
FIS AK	58026 4	FIS V 360 S, FIS HB, FIS EM 390 S, FIS VS 150 C, FIS VW and Single-component PU foam	1

Application gun **FIS AM**

,				
Туре	ArtNo.	ID	adapted for	qty. per box
				pcs.
FIS AM	56052	4	FIS V 360 S, FIS HB, FIS VS 150 C and Single-component PU foam	1

Accu-press gun **FIS AA**

Туре	ArtNo.	ID	adapted for	qty. per box
				pcs.
FIS AA	30111	1	incl. case, charger and battery pack adapted for: FIS V 360 S, FIS HB, FIS VS 150 C	1
Charger MSL 60	37297	5		1
Battery pack	37296	8		1

Pneumatic gun ${f FIS}$ ${f AP}$

Туре	ArtNo. ID	adapted for	qty. per box
			pcs.
FIS AP	58027 1	FIS V 360 S, FIS HB, FIS VS 150 C and Single-component PU foam	1

Art.-No.

Pneumatic gun **FIS AJ**

adapted for

Pneumatic gun **FIS AJ+**

				pcs.
FIS AJ	16251	4	FIS V 950 S	1
FIS AJ+	41730	0	FIS EM 1100 S	1

Application gun **KPM 2**

Туре	ArtNo. ID	adapted for	qty. per box
			pcs.
KP M 2	53117 4	FIS VS 150 C, FIP 300 SF and Single-component PU foam	1

Application guns / general accessories

TECHNICAL DATA

Application gun **FIPC**

Туре	ArtNo. ID	adapted for	qty. per box
			pcs.
FIPC	42741 3	FIP 380 C, FIPC 700	1

Site box ${f FIS}$ ${f EM}$

Туре	ArtNo.	ID	contents	qty. per box
				pcs.
FIPC Site Box 380ml	42737	6	1 x Toolbox, 1 x Brush set, 1 x ABK Blow out pump, 1 x ${\bf FIPC}$ Applicator gun, 5 x Static mixers	1
FISV Site Box 360ml	42740	4	1 x Toolbox, 1 x Brush set, 1 x ABK Blow out pump, 1 x FIS AM Applicator gun, 5 x Static mixers	1
FIS VS / FIP Site Box 150ml / 300ml	42739	0	1 x Toolbox, 1 x Brush set, 1 x ABK Blow out pump, 1 x KPM2 Applicator gun, 5 x Static mixers	1
FIS EM Site Box 360ml	42738	-	1 x Toolbox, 1 x Brush set, 1 x ABK Blow out pump, 1 x FIS AK Applicator gun, 5 x	1

Static mixers

Static mixer FIS S

Туре	ArtNo. ID	name	qty. per box
			pcs.
FIS S	61223 1	mixing nozzle	10

FIS	Extension	tube

Туре	ArtNo. ID	length	qty. per box
		L	
		[mm]	pcs.
FIS Extension tube	48983 3	1000	10

Blow-out pump **ABG**

Туре	ArtNo. ID	total length	qty. per box
		I	
		[mm]	pcs.
ABG big	89300 5	370	1

Injection technique for masonry

The expansion-free anchoring for the professional user.

OVERVIEW

Internally threaded sockets FIS E

Injection anchor sleeve, plastic FIS H K

Injection anchor sleeve with net FIS H N

Injection anchor sleeve, 1 m length FIS H L

FISEK

Approval:

German approval (DIBt) in conjunction with Injection mortar FIS V, FIS H M and FIS G resp. FIS E for solid and hollow material

With anchor sleeve suitable

- Vertically perforated bricks
- Perforated sand-lime brick
- Hollow blocks
- Solid brick
- Solid sand-lime brick
- Hollow pumice plank
- Slabs made of perforated bricks and other perforated blocks

Without anchor sleeve suitable for:

- Lightweight concrete
- Solid bick
- Solid sand-lime bricks
- Full pumice stone and other solid building materials
- Aerated concrete

For fixing of:

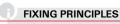
- Machines
- Gratings
- Gates
- Hand-rails
- Consoles
- Pipelines
- Sanitary equipment
- Cable trays
- **Facades**
- Awnings
- Canopies
- Wooden constructions


DESCRIPTION

- Injection anchor sleeves, threaded rods and internallythreaded sockets, specially for use with Injection mortars FIS V, FIS VS, FIS VT or FIS P in masonry materials.
- The anchor sleeve saves mortar in hollow materials and centres the anchor in the drill hole.
- In solid building materials the anchor sleeves are not required.
- In solid building materials, the injection mortar bonds the entire surface of the anchor rod / internally-threaded sockets to the wall of the drilled hole.
- With hollow materials the mortar adapts to the anchoring substrate and bears the load primarily through a mechanical interlock.
- Threaded rod FIS A made of A4 stainless steel for outdoor use and in damp conditions.

Advantages/Benefits

- High-performance mortars allow high loads in all building materials.
- Approval covers common masonry materials for maximum safety.



- Expansion-free fixing allows small axial spacings and edge distances.
- Extensive range for various cost-efficient applications.
- The mortar largely seals the drill-hole.

Injection technique for masonry

INSTALLATION

Type of Installation

Pre-positioned installation

Installation information

 In solid building materials the drill hole must be cleaned thoroughly (blow out 4 x, brush out 4x, blow out 4 x).

in perforated brick with anchor sleeve

in solid materials without anchor sleeve

TECHNICAL DATA

Injection anchor sleeve with net

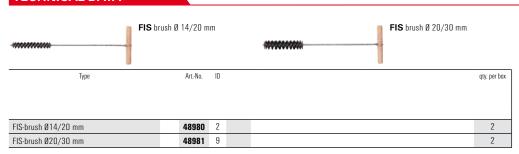
FIS H N

Туре	ArtNo.	ID	drill-Ø	min. drill hole depth	Min. anchorage depth anchor	Min. anchorage depth sleeve	No. of scale divisions on cartridge	fits	qty. per box
			$\mathbf{d_0}$	t	h_V	h_V			
			[mm]	[mm]	[mm]	[mm]			pcs.
FIS H 16 x 85 N	50470	3	16	95	90	85	15	Ø8/M8	20
FIS H 18 x 85 N	50472	7	18	95	90	85	17	Ø10/M10/FIS 18/M8 I	20
FIS H 20 x 85 N	50474	1	20	95	90	85	19	Ø12/M12/FIS 20/M10 I	20

Injection anchor sleeve, plastic

FIS H K

Туре	ArtNo.	ID	drill-Ø	min. drill hole depth	Min. anchorage depth anchor	Min. anchorage depth sleeve	No. of scale divisions on cartridge	fits	qty. per box
			d ₀	t	h_V	h_V	cartnage		
			[mm]	[mm]	[mm]	[mm]			pcs.
FIS H 12 x 50 K	41900	7	12	60	-	-	5	M6 - M8	50
FIS H 12 x 85 K	41901	4	12	95	-	-	10	M6 - M8	50
FIS H 16 x 85 K	41902	1	16	95	-	-	12	M8 - M12	50
FIS H 16 x 130 K	41903	8	16	140	-	-	15	M8 - M12	50
FIS H 20 x 85 K	41904	5	20	95	-	-	15	M12 - M16	50
FIS H 20 x 130 K	46703	9	20	140	-	-	25	M12 - M16	
FIS H 20 x 200 K	46704	6	20	210	-	-	40	M12 - M16	



Injection anchor sleeve, 1 m length

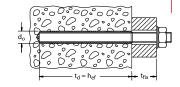
FIS H L

Туре	ArtNo.	ID	drill-Ø	total length	fits	qty. per box
			a	1		
			d ₀	I		
			[mm]	[mm]		pcs.
FIS H 12 x 1000 L	50598	4	12	1000	Ø6 / M 6 - Ø8 / M 8	10
FIS H 16 x 1000 L	50599	1	16	1000	Ø10/M10-M12	10
FIS H 22 x 1000 L	45301	8	22	1000	Ø12/M12 - Ø16/M16	6

TECHNICAL DATA

ekonomina minina di kanana di k		Inter FIS	,	readed sockets							
Туре	ArtNo.	ID	approval	drill diameter	drill depth	effect. anchorage depth	min. bolt penetration	max. bolt penetration	internal thread	fits	qty. per box
			DIBt	d_{0}	$t_{\mathbf{d}}$	h _{ef}	^e 2	e ₁	$d_{\mathtt{S}}$		
				[mm]	[mm]	[mm]	[mm]	[mm]			pcs.
FIS E 11 x 85 M6	43631	8	•	14	90	85	6	60	M 6	FIS H 16 x 85 K, FIS H 20 x 85 K	10
FIS E 11 x 85 M8	43632	5	•	14	90	85	8	60	M 8	FIS H 16 x 85 K, FIS H 20 x 85 K	10
FIS E 15 x 85 M10	43633	2	•	18	90	85	10	60	M 10	FIS H 20 x 85 K	10
FIS E 15 x 85 M12	43634	9	•	18	90	85	12	60	M 12	FIS H 20 x 85 K	10

	1100	Internally threaded sockets FIS E K									
Туре	ArtNo.	ID approval	drill diameter	drill depth	effect. anchorage depth	screw ø	fits	qty. per box			
		DIBt	d_0	t _d	h _{ef}						
			[mm]	[mm]	[mm]			pcs.			
FIS E 5 x 45 K	58053		10	45	45	4,5-5	FIS H 12 x 50 K, FIS H 12 x 85 K	10			
FIS E 6 x 75 K	58049		10	60	60	5-6	FIS H 12 x 85 K	10			
FIS E 10 x 95 K	58051		14	80	80	10	FIS H 16 x 85 K, FIS H 16 x 130 K	10			


CORRECT USE WITHOUT ANCHOR SLEEVE

Suitable for:

Lightweight concrete, solid brick, solid sand-lime brick, solid pumice and other solid

Approved for:

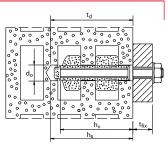
Solid bricks \ge Mz 12, solid sand-lime bricks \ge KS 12.

Туре			Injed	tion thr	eaded r	od FIS G		ally thre		Screw-inserts FIS EK					
		Control of the Contro									-4				
Dimension	8 x 100	8 x 125	8 x 125	10 x 95	10 x 110	10 x 145	12 x 105	12 x 130	12 x 150	11 x 85 M8	15 x 85 M10	15 x 85 M12	5 x 45	6 x 75 1)	10 x 95 1)
Approval	•	•		•	•		•	•		•	•	•			
Usable length t _{fix} [mm]	15	40	20	10	25	40	15	40	40	_	-	-	-	_	-
Drill diameter d ₀ [mm]	10	10	10	12	12	12	14	14	14	14	18	18	10	10	14
Drill depth t _d [mm]	80	80	80	90	90	90	110	110	110	90	90	90	45	60	80
Suitable brush-Ø [mm]	14	14	14	14	14	14	20	20	20	20	20	20	14	14	20
Anchoring depth h _{ef} [mm]	75	75	95	75	75	95	75	75	95	75	75	75	45	60	80
No. of scale units	3	3	4	4	4	5	5	5	7	4	4	4	2	3	5

¹⁾ With detachable plaster bridging.

Included in German approval.

Injection technique for masonry


CORRECT USE WITH ANCHOR SLEEVE: COMBINATION OPTIONS

Suitable for:

Vertically perforated bricks, perforated sand-lime bricks, hollow blocks, solid bricks, solid sand-lime bricks, pumice hollow blanks, hollow filler block floors, porous lightweight concrete and other perforated material.

Approved for:

Vertically perforated bricks \ge HLz 4, perforated sand-lime bricks \ge KSL 4, hollow blocks made from lightweight concrete \ge Hbl 2, hollow blocks made from concrete \ge Hbn 4, solid bricks \ge Mz 12, solid sand-lime bricks \ge KS 12 and porous lightweight concrete.

Туре	Art. No.		Inject	tion ancho			Injection a	anchor slee FIS HN	ve with net	Injection anchor sleeve FIS HL			
			- 1				U						
		12 x 50	12 x 85	16 x 85	16 x 130	20 x 85	16 x 85	18 x 85	20 x 85	12 x 1000	16 x 1000	22 x 1000	
Drill-Ø d ₀ [mm]		12	12	16	16	20	16	18	20	12	16	22	
Drill depth t _d [mm]		≥60	≧95	≧95	≥140	≧95	≧95	≧95	≧95	-	-	-	
Threaded rod													
Granical Continues of													
FIS A M 6 x 110	90273	50	15							for	for	for	
FIS A M 8 x 90	90274	30								M6 - M8	M10 - M12	M12 - M16	
FIS A M 8 x 130	90276	70	35	35			35			threaded	threaded	threaded rods	
FIS A M 8 x 175	90277	115	80	80	35		80			rods	rods	Tous	
FIS A M 10 x 110	90278			15				15					
FIS A M 10 x 150	90281			55	10			55					
FIS A M 12 x 140	90283					20			20				
FIS A M 16 x 175	90288					30							
Internally threaded	d sockets												
FIS E 11 x 85 M6	43631												
FIS E 11 x 85 M8	43632		•	•									
FIS E 15 x 85 M10	43633												
FIS E 15 x 85 M12	43634												
Screw-inserts													
FIS E 5 x 45 K	58053												
FIS E 6 x 75 K	58049												
FIS E 10 x 95 K	58051												

- Included in the German Approval
- Without Approval
- 1) Plaster bridging possible up to 20mm
- 2) For anchoring in KSL or plaster bridging up to 20mm

 $RG\ M$ threaded rods can be used as an alternative. Please refer to page 64 for suitable threaded rods.

Other sizes available - Please contact Technical Department 01491 827 920

³⁾ Required in solid material

LOADS

Permissible loads according to German Approval for FIS V, recommended loads for FIS VS, FIS VT and FIS P in masonry and porous lightweight concrete for tension, shear load and oblique tension at every angle.

Fixing type					Threaded	rod FIS A			Internally threaded sockets FIS E							
Application without anchor sleeve			FIS A	A M8	FIS A	M10	FIS A	M12	FIS	E M8	FIS E	M10	FIS	E M12		
Solid brick	≥ Mz 12	[kN]	1.0) 5)	1			.7		.0		.7	1	1.7		
Solid sand-lime brick	≥ KS 12	[kN]	1.0) ⁵⁾	1		1			.0		.7		1.7		
Nominal drill diameter	d n	[mm]	1	0	1	2	1	4	14		18			18		
Drill hole depth	t	[mm]	8	0	8	0	80		80		80		-	80		
Anchorage depth	h _v	[mm]	7	5	75		7	75		75	7	75		75		
Required quantity		[scale units]		3		1	į.			4		4		4		
Application with anchor sleeve				A M8	FIS A	M10	FIS A	M12	FIS	E M8	FIS E	M10	FIS I	E M12		
in conjunction with anchor FIS			H16/75M	H16/100M	H16/75M	H16/100M	H20/75M	H20/100M	H20/75M	H20/100M	H20/75M	H20/100M	H20/75M	H20/100M		
Solid brick	≧ Mz 12			.7	1	.7	1	.7	1	.7	1	.7	1	1.7		
Solid sand-lime brick	≥ KS 12	[kN]	1.	.7	1	.7	1	.7	1	.7	1	.7	1	1.7		
Vertically peforated brick	≧ HLz 4	[kN]	0.3/	0.6 1)	0.3/	0.6 1)	0.3/	0.6 1)	0.3/	'0.6 ¹⁾	0.3/	0.6 1)	0.3/	/0.6 ¹⁾		
	≧ HLz 6	[kN]		0.8 1)	0.4/			0.8 1)		0.8 1)		0.8 1)		/0.8 ¹⁾		
	≧ HLz 12	[kN]	0.8/	1.0 1)	0.8/	1.0 1)	0.8/	1.0 1)	0.8/	′1.0 ¹)	0.8/	1.0 1)	0.8/	/1.0 1)		
Perforated sand-lime brick	≧ KSL 4	[kN]	-	0.4/0.6 1)	-	0.4/0.6 1)	-	0.4/0.6 1)	-	0.4/0.6 1)	-	0.4/0.6 1)	-	0.4/0.6 1)		
	≥ KSL 6 ≥ KSL 12	[kN] [kN]	-	0.6/0.8 1) 0.8/1.4 1)	-	0.6/0.8 ¹⁾ 0.8/1.4 ¹⁾	-	0.6/0.8 1) 0.8/1.4 1)	-	0.6/0.8 1)		0.6/0.8 1) 0.8/1.4 1)	-	0.6/0.8 ¹⁾ 0.8/1.4 ¹⁾		
Hollow blocks made of lightweight concrete	≥ RSL 12 ≥ Hbl 2	[kN]	0.27		- 0.27			0.5 1)		0.5 1)		0.5 1)	- 0.2	/0.5 ¹⁾		
notiow blocks made of fightweight concrete	≧ Hbl 4	[kN]	0.3/0.5 ¹⁾ 0.6/0.8 ¹⁾		0.3/0.5 ¹⁾ 0.6/0.8 ¹		0.6/0.8 1		,	0.5 ¹		0.8 1	,	/0.8 ¹		
Hollow blocks made of concrete	≥ Hbn 4	[kN]		0.8 1)	0.6/0.8 1)		0.6/0.8 1)			0.8 1)		0.8 1)		/0.8 ¹⁾		
Porous lightweight concrete	TGL	[kN]		.3	1.3			.0		.3		.3		2.0		
Nominal drill diameter	dn	[mm]	16	16	16 16		20	20		20 20		20 20		20		
Drill hole depth	t	[mm]	90	105	90	105	90	105	90	105	90	105	20 90	105		
Anchorage depth of perforated sleeve	h _s	[mm]	82	102	82	102	82	102	82	102	82	102	82	102		
Anchorage depth of anchor part	h _v	[mm]	75	95	75	95	75	95	75	75	75	75	75	75		
Required quantity		units]	10	15	10	15	15	19	15	19	15	19	15	19		
Component dimensions						<u> </u>				ı						
Axial spacing (fixing group) 2)	≧ a	[mm]	100, 200 (only Hbl and	d Hbn), 150	(only interr	ally porous	lightweight	t concrete)							
	min a	[mm]	50, 100 (o	nly internall	y porous lig	htweight co	ncrete)									
Min. spacing between single fixings	a ₇	[mm]	250, 200 (only M8, M	10 internall	y porous lig	htweight co	increte)								
Edge distance in masonry						,, ,										
without shear load towards the free edge	≧ a _r	[mm]	200; with I	oad or tiltin	g proof; 50	60 (only N	Iz and KS)									
with shear load towards the free edge	≧ a _r	[mm]	200, 250 (only Mz and	l KS)											
Edge distance in porous lightweight concrete 3)	'															
St. 1 1 1 1 1 1 1 1 1 1	≧ a _r	[mm]	150	150	150	150	150	150	150	150	150	150	150	150		
without shear load towards the free edge	min a _r	[mm]	100	100	100	100	100	100	100	100	100	100	100	100		
with shear load towards the free edge	≧ a _r	[mm]	200	200	200	200	200	200	200	200	200	200	200	200		
Minimum structural component thickness	d	[mm]	110,	175 ⁴⁾	110,	175 ⁴⁾	110,	175 4)	110, 175 ⁴⁾		110, 175 ⁴⁾		110,	175 ⁴⁾		
Clearance hole in fixture to be attached	d _l	[mm]	(3	1	2	1	4		9	1	2	14			
Required torque	T _{inst}	[Nm]	4	1	4	1	4	1		4		4	4			
Bending moment	gvz / A4	[Nm]	10.7 ,	/ 12.1	21.4 ,	/ 24.1	37.4 ,	/ 42.1	10.7	/ 12.1	21.4	/ 24.1	37.4	/ 42.1		

¹¹ Rised value only applies if drilling is in rotary direction; it must also be proved in KSL bricks that the outer webs of the brick are at least 30 mm (old bricks).

For evaluating load values of country specific masonry type bricks, we recommend pull-out tests. Please contact the fischer technical services department on 01491 827 920.

The axial spacing a may be fallen short of to min. a if the approved loads are reduced. This does not apply to made of Hbl and Hbn masonry.

The edges distance a_r may be fallen short to min. a_r , if the approved loads are reduced and there is no shear load towards the free edge.

⁴⁾ Only porous lightweight concrete.

⁵⁾ For masonry with superimposed load: permissible load 1.4 kN

Injection technique for concrete

The expansion-free anchoring for the professional user.

OVERVIEW

THE RESERVE OF THE PERSON OF T

Threaded rod **FIS A**, zinc-plated steel

Threaded rod
FIS A,
stainless steel A4

Approved in conjunction with FIS V and FIS VW:

 Concrete ≥ C20/25 and ≤ C50/60

Suitable in conjunction with FIS VS and FIS EM:

For fixing of:

- Steel constructions in general
- Supports
- Rails
- High-racks
- Consoles

- Railings
- Window elements
- Scaffolds
- Machines
- Facades

DESCRIPTION

- Specially for use with Injection mortars FIS V, FIS VS, FIS VW, FIS VT or FIS EM in non-cracked concrete.
- The three colour markings indicate the correct setting depth, according to the load-bearing capacity or the useful length required.
- The anchor rods are also suitable for push-through installation, using special push-through elements.
- The mortar bonds the entire surface of the anchor rod to the wall of the drilled hole and seals the hole.
- Anchor rod made of stainless steel A4 for outdoor use and in damp conditions.

Advantages/Benefits

- High-performance mortars allow high loads in non-cracked concrete
- Three possible setting depths for three different load levels and useful lengths.

- Quick manual installation without a setting tool reduces the work involved.
- Simple and quick push-through installation reduces installation time.
- Steel grade 5.8 or A4-70 guarantee the highest steel load-bearing strength and maximum permissible bending moments.

INSTALLATION

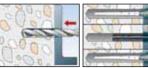
Type of installation

- Pre-positioned installation
- Push-through installation (with fischer push-through element)

Installation tips

- Drill the hole. Observe the desired setting depth / usable length.
- Clean the drill-hole thoroughly (blow out 4 x, brush out 4 x, blow out 4 x).
- Fill with the defined mortar quantity from the bottom of the drill-hole.
- If necessary screw the push-through element into position up to the depth marking.
- Then press the threaded rod down to the bottom of the hole (without setting tool), turning it slightly while doing so.

Pre-positioned installation

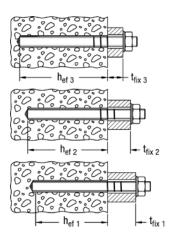


Push-through installation

- Observe the curing time of the injection mortar.
- Install the building component. Observe the installation torque indicated in the technical data sheet.

TECHNICAL DATA

Threaded rod FIS A, zinc plated steel


Threaded rod FIS A A4, stainless steel

					Anch	Anchorage depth 1			orage de	pth 2	Anch	orage de	pth 3			
	zinc plated steel	Rost free stainless steel A4	approval	drill diameter	anchorage depth = drill hole depth	max. usable length	charge FIS V	anchorage depth = drill hole depth	max. usable length	charge FIS V	anchorage depth = drill hole depth	max. usable length	charge FIS V	total length	Hexagon nut	qty. per box
		Steel A4	ETA	dO	h _{ef1} = h ₀₁	t _{fix1}		h _{ef2} = h ₀₂	t _{fix2}		h _{ef3} = h ₀₃	t _{fix3}		L	SW	
Туре	ArtNo.	ArtNo.		[mm]	[mm]	[mm]	[scale units]	[mm]	[mm]	[scale units]	[mm]	[mm]	[scale units]	[mm]		pcs.
FIS A M 6 x 75	90243	90437		8	50	15	2	60	5	2	-	-	-	75	10	20
FIS A M 6 x 85	90272	90438		8	50	25	2	60	15	2	-	-	-	85	10	20
FIS A M 6 x 110	90273	90439		8	50	50	2	60	40	2	75	25	3	110	10	20
FIS A M 8 x 90	90274	90440		10	65	15	3	-	-	-	-	-	-	90	13	10
FIS A M 8 x 110	90275	90441		10	65	35	3	80	20	4	95	5	4	110	13	10
FIS A M 8 x 130	90276	90442		10	65	55	3	80	40	4	95	25	4	130	13	10
FIS A M 8 x 175	90277	90443		10	65	100	3	80	85	4	95	70	4	175	13	10
FIS A M 10 x 110	90278	90444		12	80	15	4	90	5	5	-	-	-	110	17	10
FIS A M 10 x 130	90279	90447		12	80	35	4	90	25	5	110	5	6	130	17	10
FIS A M 10 x 150	90281	90448		12	80	55	4	90	45	5	110	25	6	150	17	10
FIS A M 10 x 200	90282	90449	•	12	80	105	4	90	95	5	110	75	6	200	17	10
FIS A M 12 x 140	90283	90450		14	95	30	5	110	15	6	120	5	6	140	19	10
FIS A M 12 x 160	90284	90451		14	95	50	5	110	35	6	120	25	6	160	19	10
FIS A M 12 x 180	90285	90452		14	95	70	5	110	55	6	120	45	6	180	19	10
FIS A M 12 x 210	90286	90453		14	95	100	5	110	85	6	120	75	6	210	19	10
FIS A M 12 x 260	90287	90454		14	95	150	5	110	135	6	120	125	6	260	19	10
FIS A M 16 x 175	90288	90455		18	125	30	9	140	15	10	-	-	-	175	24	10
FIS A M 16 x 200	90289	90456		18	125	55	9	140	40	10	170	10	12	200	24	10
FIS A M 16 x 250	90290	90457		18	125	105	9	140	90	10	170	60	12	250	24	10
FIS A M 16 x 300	90291	90458		18	125	155	9	140	140	10	170	110	12	300	24	10
FIS A M 20 x 245	90292	90459		24	160	60	20	170	50	21	210	10	26	245	30	10
FIS A M 20 x 290	90293	90460		24	160	105	20	170	95	21	210	55	26	290	30	10
FIS A M 24 x 290	90294	90461		28	190	65	40	240	20	51	-	-	-	290	36	5
FIS A M 24 x 380	90295	90462		28	190	155	40	240	110	51	285	65	60	380	36	5
FIS A M 30 x 340	90296	90463		35	240	65	55	280	25	64	-	-	-	340	46	5
FIS A M 30 x 430	90297	90464		35	240	155	55	280	115	64	340	55	78	430	46	5

Push-through element

Туре	ArtNo.	ID	approval	min max. usable length	thread	qty. per box
			■ ETA	t_{fix}	М	
				[mm]		pcs.
Push-through element M 8 x 3 A4	78230	9		3 - 6	M 8	10
Push-through element M 10 x 3 A4	78231	6		3 - 6	M 10	10
Push-through element M 10 x 8 A4	78232	3		8 - 16	M 10	10
Push-through element M 12 x 4 A4	78233	0		4 - 8	M 12	10
Push-through element M 12 x 10 A4	78234	7		10 - 20	M 12	10
Push-through element M 16 x 5 A4	78235	4		5 - 10	M 16	10
Push-through element M 16 x 10 A4	78236	1		10 - 20	M 16	10

Injection technique for concrete

TECHNICAL DATA

**************************************	Cleaning brush for cor	icrete	-	Compressed-air cleaning gun ABP
Туре	ArtNo.	ID	for thread	qty. per box
			М	
				pcs.
BS ø 8	78177	7	M 6	1
BS ø 10	78178	4	M 8	1
BS ø 12	78179	1	M 10	1
BS ø 14	78180	7	M 12	1
BS ø 18	78181	4	M 16	1
BS ø 24	78182	1	M 20	1
BS ø 28	78183	8	M 24	1
BS ø 35	78184	5	M 30	1
ABP	59456	8	-	1

LOADS - INJECTION MORTAR FIS V, FIS VS AND FIS VW

Mean ultimate loads, design resistant and recommended loads for single anchors of fischer Injection system FIS V and FIS VS, FIS VW used with fischer threaded rods with large axial spacing and edge distance.

											Ne	on-crack	ed concre	ete						
Anchor size					М	6	M	18	М	10	M	12	M 16		M 20		M 24		M30	
500.1	h ₀₁	= h _{ef1}	[mm]		5	0	6	5	8	0	9	15	1.	25	1	60	1	90	2	40
Effektive anchorage depth = Drill hole depth	h ₀₂	= h _{ef2}	[mm]		6	0	8	0	9	0	1	10	1-	40	1	70	2	40	25	80
Dim note depth	h ₀₃	= h _{ef3}	[mm]		7	5	95		110		1:	20	1	70	2	10	285		3/	40
Drill hole diameter		dO	[mm]		8	}	1	0	1	2	1	4	1	8	2	!4	28		3	35
Mean ultimate loads ${\rm N_{U}}$ and ${\rm V_{U}}$ [kN]																				
					gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
			[kN]	h _{ef1}	10.5*	14.1*	19.0*	25.6*	30.2*	40.6*	43.8*	58.4	81.6*	93.2	127.4	127.4	176.9	176.9	248.1	248.1
Tensile	0°	Nu	[kN]	h _{ef2}	10.5*	14.1*	19.0*	25.6*	30.2*	40.6*	43.8*	59.0*	81.6*	104.4	127.4*	135.4	183.6*	223.5	289.5	289.5
			[kN]	h _{ef3}	10.5*	14.1*	19.0*	25.6*	30.2*	40.6*	43.8*	59.0*	81.6*	109.9*	127.4*	167.2	183.6*	247.1*	291.7*	351.5
Shear	90°	٧ _u	[kN]		6.3*	8.4*	11.4*	15.4*	18.1*	24.4*	26.3*	35.4*	49.0*	65.9*	76.4*	102.9*	110.1*	148.3*	175.0*	235.6*
Design resistant loads N $_{Rd}$ and V $_{Rd}$ [$\!$	kN]																			
					gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
			[kN]	h _{ef1}	4.7	4.7	8.2	8.2	12.6	12.6	17.9	17.9	31.4	31.4	40.2	40.2	57.3	57.3	67.8	67.8
Tensile	0°	N_{Rd}	[kN]	h _{ef2}	5.7	5.7	10.1	10.1	14.1	14.1	20.7	20.7	35.2	35.2	42.7	42.7	72.4	72.4	79.2	79.2
			[kN]	h _{ef3}	7.1	7.1	11.9	11.9	17.3	17.3	22.6	22.6	42.7	42.7	52.8	52.8	85.9	85.9	96.1	96.1
Shear	90°	V_{Rd}	[kN]		4.2	4.5	7.6	8.2	12.1	13.0	17.5	18.9	32.6	35.3	51.0	55.0	73.4	79.2	116.7	125.9
Recommended loads N_{rec} and V_{rec} [k	N]																			
					gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
			[kN]	h _{ef1}	3.4	3.4	5.9	5.9	9.0	9.0	12.8	12.8	22.4	22.4	28.7	28.7	40.9	40.9	48.4	48.4
Tensile	0°	N _{rec}	[kN]	h _{ef2}	4.1	4.1	7.2	7.2	10.1	10.1	14.8	14.8	25.1	25.1	30.5	30.5	51.7	51.7	56.6	56.6
			[kN]	h _{ef3}	5.1	5.1	8.5	8.5	12.4	12.4	16.1	16.1	30.5	30.5	37.7	37.7	61.4	61.4	68.6	68.6
Shear	90°	V_{rec}	[kN]		3.0	3.2	5.4	5.9	8.6	9.3	12.5	13.5	23.3	25.2	36.4	39.3	52.4	56.6	83.4	89.9
Recommended bending moment M_{rec}	[Nm]																			
					gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
		M_{rec}	[Nm]		4.5	4.9	11.4	11.9	22.3	23.8	38.9	42.1	98.9	106.7	193.1	207.9	333.1	359.4	668.0	720.7
Component dimensions, minimum axia	al spacin	gs and	edge di	stances	5															
Min. axial spacing 1)		Smin	[mm]		4	40		0	4	5	5	5	6	15	85		1	05	1/	40
Min. edge distance 1)		c _{min}	[mm]		4	40		0	4	5	55		65		85		105		140	
			[mm]		10	10	10	00	1	10	125		165		210		250		310	
Min. structural component thickness		h _{min2}	[mm]		10	10		10		20	140		180		220		300		350	
		h _{min3}	[mm]		11	5	12	25		10		50	210		260		345		410	
Required torque		T _{inst}	[Nm]		Ę)	1	0	2	0	4	.0	6	0	1.	20	150		300	

^{*} Steel failure decisive

Values given above are valid under the following assumptions: - Sufficient mechanical cleaning of the drill hole using stainless steel brushes.

All values apply for concrete C 20/25 without edge or spacing influence.

Design resistant loads: material safety factor γ_M is included. Material safety factor γ_M depends on the type of anchor.

Recommended loads: material safety factor γ_M and safety factor for load γ_L = 1.4 are included.

The condition of application differ from those given in the European Technical Approval (ETA). For further detailed information about the ETA please contact the fischer technical service department. RG M threaded rods can be used as an alternative. Please refer to page 64 for suitable threaded rods.

Higher loads are available using Premium Cleaning methods. Please contact Technical Department for details on 01491 827920.

¹⁾ For minimum axial spacing and minimum edge distance the above described loads have to be reduced (see "fischer Technical Handbook" or design software "CC-Compufix")!

⁻ Dry concrete, temperature range 50°C long term temperature and 80°C short term temperature.

LOADS - INJECTION MORTAR FIS EM

Mean ultimate loads, design resistant and recommended loads for single anchors of fischer Injection system FIS EM used with fischers threaded rods with large axial spacing and edge distance.

										ı	Von-crack	ed concret	e					
Anchor size					M	18	M	10	M	12	M	16	M	20	M 24		M30	
	h ₀₁	= h _{ef1}	[mm]		65		8	10	9	15	125		160		1:	90	240	
Effektive anchorage depth = Drill hole depth	h ₀₂	= h _{ef2}	[mm]		8	0	9	90		110		140		170		240		80
Dilli liole deptil	h ₀₃	= h _{ef3}	[mm]		9	5	1	110		120		70	210		285		3-	40
Drill hole diameter		do	[mm]		1	10		12		14		8	2	4	28		3	35
Mean ultimate loads N_u and V_u [kN]																		
					gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
			[kN]	h _{ef1}	19.0*	25.6*	30.2*	40.6*	43.8*	59,0*	81.6*	98.6	127.4*	140.7	183.6*	197.7	291.7*	291.8
Tensile	0°	N_{u}	[kN]	h _{ef2}	19.0*	25.6*	30.2*	40.6*	43.8*	59.0*	81.6*	109.9*	127.4*	149.5	183.6*	247.1*	291.7*	340.4
			[kN]	h _{ef3}	19.0*	25.6*	30.2*	40.6*	43.8*	59.0*	81.6*	109.9*	127.4*	171.5	183.6*	247.1*	291.7*	392.7*
Shear	90°	٧ _u	[kN]		11.4*	15.4*	18.1*	24.4*	26.3*	35.4*	49.0*	65.9*	76.4*	102.9*	110.1*	148.3*	175.0*	235.6*
Design resistant loads N $_{Rd}$ and V $_{Rd}$ [$\!$	kN]																	
					gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
			[kN]	h _{ef1}	9.5	9.5	14.7	14.7	20.9	20.9	36.7	36.7	58.7	58.7	83.5	83.5	132.0	132.0
Tensile	0°	N_{Rd}	[kN]	h _{ef2}	11.7	11.7	16.5	16.5	24.2	24.2	41.1	41.1	62.3	62.3	105.5	105.5	153.9	153.9
			[kN]	h _{ef3}	12.8	13.7	20.2	20.2	26.4	26.4	49.8	49.9	77.0	77.0	123.2	125.3	186.9	186.9
Shear	90°	v_{Rd}	[kN]		7.6	8.2	12.1	13.0	17.5	18.9	32.6	35.3	51.0	55.0	73.4	79.2	116.7	125.9
Recommended loads N_{rec} and $V_{rec}[kl]$	N]																	
					gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
			[kN]	h _{ef1}	6.8	6.8	10.5	10.5	14.9	14.9	26.2	26.2	41.9	41.9	59.6	59.6	94.3	94.3
Tensile	0°	N_{rec}	[kN]	h _{ef2}	8.4	8.4	11.8	11.8	17.3	17.3	29.4	29.4	44.5	44.5	75.4	75.4	109.9	109.9
			[kN]	h _{ef3}	9.1	9.8	14.4	14.4	18.9	18.9	35.6	35.6	55.0	55.0	88.0	89.5	133.5	133.5
Shear	90°	V_{rec}	[kN]		5.4	5.9	8.6	9.3	12.5	13.5	23.3	25.2	36.4	39.3	52.4	56.6	83.4	89.9
Recommended bending moment M _{rec}																		
					gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
		M _{rec}	[Nm]		11.4	11.9	22.3	23.8	38.9	42.1	98.9	106.7	193.1	207.9	333.1	359.4	668.0	720.7
Component dimensions, minimum axia	al spacir		edge di	stances	3													
Min. axial spacing 1)		Smin	[mm]		4	.0	4	-5	5	5	6	35	8	5	1	05	1-	40
Min. edge distance 1)		c _{min}	[mm]		4	.0	4	5	5	5	ε	35	8	5	1	05	1-	40
		h _{min1}	[mm]		11	00	1	10	1.	25	1	65	2	10	2	50	3	10
Min. structural component thickness		h _{min2}	[mm]		1	10	1:	20	14	40	180		220		3	00	350	
		h _{min3}			1:			40	1	50		10	260		345		410	
Required torque		T _{inst}	[Nm]		1	0	2	:0	4	-0	6	60	12	20	1	50	300	

^{*} Steel failure decisive.

Values given above are valid under the following assumptions: - Sufficient mechanical cleaning of the drill hole using stainless steel brushes.

- Dry concrete, temperature range 50°C long term temperature and 80°C short term temperature.

All values apply for concrete C 20/25 without edge or spacing influence.

Design resistant loads: material safety factor γ_M is included. Material safety factor γ_M depends on the type of anchor. Recommended loads: material safety factor γ_M and safety factor for load $\gamma_L = 1.4$ are included.

RG M threaded rods can be used as an alternative. Please refer to page 64 for suitable threaded rods.

¹⁰ For minimum axial spacing and minimum edge distance the above described loads have to be reduced (see "fischer Technical Handbook" or design software "CC-Compufix")!

Injection technique for concrete

LOADS - INJECTION MORTAR FIS VT

Mean ultimate loads, design resistant and recommended loads for single anchors of fischer Injection system FIS VT used with fischer threaded rods with large axial spacing and edge distance.

										N	on-cracke	ed concre	te						
Anchor size				IV	6	M	8	М	10	M	12	M	16	M	20	M	24	М	130
Effektive anchorage depth		h _{ef}	[mm]	6	0	80		90		110		125		170		210		2	80
Drill hole depth		ho≧	[mm]	6	0	8	0	90		110		125		170		210		2	80
Drill hole diameter		dO	[mm]		3	1	0	1	2	1	4	1	8	2	4	2	28	3	35
Mean ultimate loads ${\rm N_{U}}$ and ${\rm V_{U}}$ [kN]																			
				gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
Tensile	0°	N _u	[kN]	10.5*	12.7	19.0*	23.0	30.2*	36.5	43.8*	53.1	79.9	79.9	121.9	121.9	176.0	176.0	261.0	261.0
Shear	90°	V_{u}	[kN]	6.3*	8.4*	11.4*	15.4*	18.1*	24.4*	26.3*	35.4*	49.0*	65.9*	76.4*	102.9*	110.1*	148.3*	175.0*	235.6*
Design resistant loads N_{Rd} and V_{Rd} [kN]																		
				gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
Tensile	0°	N _{Rd}	[kN]	5.1	5.1	9.1	9.1	12.7	12.7	18.6	18.6	28.3	28.3	38.4	38.4	57.0	57.0	71.3	71.3
Shear	90°	V_{Rd}	[kN]	3.8	4.1	6.8	7.4	10.9	11.7	15.8	17.0	29.4	31.7	45.9	49.5	66.1	71.3	105.0	113.3
Recommended loads N _{rec} and V _{rec} [k	N]																		
				gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
Tensile	0°	N _{rec}	[kN]	3.7	3.7	6.5	6.5	9.1	9.1	13.3	13.3	20.2	20.2	27.5	27.5	40.7	40.7	50.9	50.9
Shear	90°	V _{rec}	[kN]	2.7	2.9	4.9	5.3	7.8	8.4	11.3	12.2	21.0	22.6	32.8	35.4	47.2	50.9	75.0	80.9
Recommended bending moment M _{rec}	[Nm]				•		•		•				•		•				•
				gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4	gvz	A4
		M _{rec}	[Nm]	4.5	4.9	11.4	11.9	22.3	23.8	38.9	42.1	98.9	106.7	193.1	207.9	333.1	359.4	668.0	720.7
Component dimensions, minimum axi	al spacir	gs and	edge dis	tances															
Min. axial spacing 1)		s _{min}	[mm]	4	40		5	4	5	5	5	65		85		1	05	14	40
Min. edge distance 1)		c _{min}	[mm]	4	0	4	5	4	5	55		65		85		105		14	40
Min. structural component thickness		h _{min}	[mm]	1	00	11	10	12	20	140		165		220		270		350	
Required torque		T _{inst}	[Nm]		5	1	0	2	0	4	0	6	0	13	20	1	50	300	

^{*} Steel failure decisive.

Values given above are valid under the following assumptions: - Sufficient mechanical cleaning of the drill hole using stainless steel brushes.

All values apply for concrete C 20/25 without edge or spacing influence.

Design resistant loads: material safety factor γ_M is included. Material safety factor γ_M depends on the type of anchor.

Recommended loads: material safety factor γ_M and safety factor for load γ_L = 1.4 are included.

The condition of application differ from those given in the European Technical Approval (ETA). For further detailed information about the ETA please contact the fischer technical service department. RG M threaded rods can be used as an alternative. Please refer to page 64 for suitable threaded rods.

¹⁹ For minimum axial spacing and minimum edge distance the above described loads have to be reduced (see "fischer Technical Handbook" or design software "CC-Compufix")!

⁻ Dry concrete, temperature range 50°C long term temperature and 80°C short term temperature.

Internal-threaded anchor RG MI

OVERVIEW

Resin capsule R M

Internal-threaded anchor RG MI, stainless steel A4

Suitable for:

- Concrete ≥ C12/15
- Natural stone with dense structure

For fixing of:

Detachable connections with metrical screws in the steel, metal and plant construction.

DESCRIPTION

- The fixing system consists of the Internal- threaded anchor RG MI and the Resin capsule R M.
- The Resin capsule R M contains quick-curing styrene-free vinylester resin.
- Suitable for commercially-available metric screws and threaded rods.
- · During setting, the edges of the internal threaded anchor destroy the capsule in the drill hole, mix and activate the
- The resin adheres to the entire surface of the internal threaded anchor, bonding it to the wall of the drilled hole.

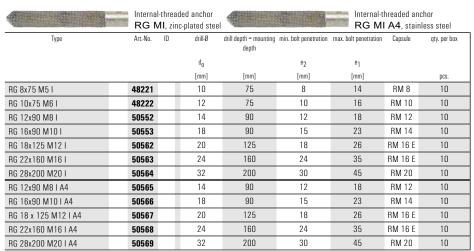
Advantages/Benefits

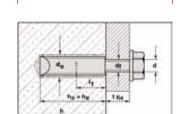
- High-performance resin guarantees high loads in noncracked concrete.
- The resin anchoring is free of expansion forces and permits low axial spacings and edge distances.
- Flush finish, no projecting bolt after dismantling the fixture.

INSTALLATION

Type of installation

Pre-positioned installation





TECHNICAL DATA

Setting tool is enclosed.

CURING TIME

Curing time Resin capsule RM

Temperature at anchoring base	Curing time
- 5°C - ± 0°C	240 min.
± 0°C - +10°C	45 min.
+ 10°C - + 20°C	20 min.
≧ + 20°C	10 min.

Please note: The curing times apply for dry anchoring bases. In damp anchoring bases they should be doubled.

Bemove water from drill hole.

LOADS

Mean ultimate loads, design resistant and recommended loads for single anchors of fischer Internal-threaded anchor RG MI with large axial spacing and edge distance

							Non-cracked concrete		
Anchor size					RG M 5 I	RG M 6 I	RG M 8 I	RG M 10 I	RG M 12 I
Effective anchorage depth		h _{ef}	[mm]		75	75	90	90	125
Drill hole depth		h ₀ >	[mm]		75	75	90	90	125
Drill hole diameter		do	[mm]		10	12	14	18	20
Mean ultimate loads N _{II} and V _{II} [kN]									
Tensile	0°	N _u	[kN]	gvz	11.4*	16.1*	29.3*	42.3*	45.3*
		u	[kN]	A4	-	-	25.6*	40.6*	59.0*
Shear	90°	V,,	[kN]	gvz	6.8*	9.7*	17.6*	25.4*	27.2*
		ŭ	[kN]	A4	-	-	15.4*	24.4*	35.4*
Design resistant loads N_{Rd} and V_{Rd} [kl	N]								
Tensile	0°	N_{Rd}	[kN]	gvz	4.8	6.7	12.2	19.3	23.1
		110	[kN]	A4	-	-	12.2	19.3	23.1
Shear	90°	V _{Rd}	[kN]	gvz	4.6	6.4	11.8	16.9	15.1
		110	[kN]	A4	-	-	8.3	13.0	18.9
Recommended loads N _{rec} and V _{rec} [kN	1]								
Tensile	0°	N _{rec}	[kN]	gvz	3.4	4.8	8.7	13.8	16.5
		100	[kN]	A4	-	-	8.7	13.8	16.5
Shear	90°	V_{rec}	[kN]	gvz	3.3	4.6	8.4	12.1	10.8
			[kN]	A4	-	-	5.9	9.3	13.5
Recommended bending moment M_{rec} [[Nm], vali	id for s	tandard	threaded rod	s with steel grade 5.8,	/8.8 and A4-70 (stainless s	teel)		
	5.8	M _{rec}	[Nm]	gvz	2.0	4.4	10.7	21.4	37.4
	8.8		[Nm]	gvz	4.1	7.0	17.1	34.2	59.8
			[Nm]	A4	-	-	12.0	24.0	42.0
Component dimensions, minimum axial	spacings	and e	dge dist	tances					
Min. axial spacing ¹⁾		Smin	[mm]		40	45	55	60	65
Min. edge distance ¹⁾			[mm]		40	45	55	60	65
Min. structural component thickness		h _{min}	[mm]		100	110	140	140	170
Maximum torque		Tinst	[Nm]		2.5	6.0	8.5	13.0	17.0

 $^{^{\}star}$ steel failure, valid for standard threaded rods of steel grade 5.8/8.8 and A4-70 (stainless steel).

All load values apply for concrete C20/25 without edge or spacing influence.

 $\text{Design resistant loads:} \qquad \text{material safety factor } \gamma_{M} \text{ is included. Material safety factor } \gamma_{M} \text{ depends on type of anchor.}$

Recommended loads: material safety factor γ_M and safety factor for load γ_L = 1.4 are included.

The condition of application differ from those given in the European Technical Approval (ETA). For further detailed information about the ETA please contact the fischer technical service department. For detailed design method please contact the fischer technical service department.

Higher loads are available using Premium Cleaning methods. Please contact Technical Department for details on 01491 827920.

For min. axial spacing and min. edge distance the above described loads have to be reduced!

LOADS

Mean ultimate loads, design resistant and recommended loads for single anchors of fischer Injection system FIS V, FIS VS and FIS VW used with internal threaded anchors RG MI with large spacing and edge distance.

					***					1110					1110		
Anchor size					M 8	1	١ ،			M 10		۱ ۵			M 12	4.4	
Kind of steel			F.0.	gvz	100	A4	C	5.0	gvz	10.0	A4	C	F.0	gvz	10.0	A4	C
Steel grade		f 1	5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529
Effective anchorage depth	h _{ef}	[mm]			90					90					125		
Drill hole depth	h _o	[mm]								h _o = h _{ef}							
Drill hole diameter	d _o	[mm]			14					18					20		
Mean ultimate loads N _u and V _u [kN]														1			
Tensile 0°	N _U	[kN]	19.0*	29.0*	36.6*	26		30.0*	46.0*	57.8*	41		44.0*	67.0*	84.1*		.0*
Shear 90°	V _u	[kN]	9.5*	14.6*	15.3*	12	.8*	15.1*	23.2*	24.3*	20	.3*	21.9*	33.7*	35.4*	29	.5*
Design resistant loads N _{Rd} and V _{Rd} [kN]							1										
Tensile 0°	N _{Rd}	[kN]	12.8		6.7	13.9	16.7	20.3	22		21.9	22.2			27.8		
Shear 90°	V_{Rd}	[kN]	7.6	11.7	10.2	8.2	10.2	12.1	18.6	16.2	13.0	16.2	17.5	27.0	23.6	18.9	23.6
Recommended loads N _{rec} and V _{rec} [kN]																	
Tensile 0°	N _{rec}	[kN]	9.2		1.9	9.9	11.9	14.5	15		15.7	15.9			19.8		
Shear 90°	V_{rec}	[kN]	5.4	8.3	7.3	5.6	7.3	8.6	13.3	11.6	9.3	11.6	12.5	19.3	16.9	13.5	16.9
Recommended bending moment M _{rec} [Nn							1					1					
	M_{rec}	[Nm]	11.4	17.1	18.1	11.9	14.9	22.3	34.3	35.7	23.8	29.7	38.9	60.0	61.9	42.1	52.6
Component dimensions, minimum spacing	s and e	dge distance	es														
Characteristic spacing	s _{cr.} N	[mm]			270					270					375		
Characteristic edge distance	c _{cr, N}	[mm]			135					135					187.5		
Minimum spacing ¹⁾	Smin	[mm]			40					45					60		
Minimum edge distance 1)	c _{min}	[mm]			40					45					60		
Minimum structural component thickness	h _{min}	[mm]			120					125					165		
Minimum screw penetration depth	$\max I_S$	[mm]			12					15					18		
Maximum screw penetration depth	min I _S	[mm]			18					23					26		
Clearance hole in fixture to be attached	$d_f \le$	[mm]			9					12					14		
Glodianos nois in intare to be attached																	
Required torque	T _{inst}	[Nm]			10					20					40		
		[Nm] [scale units]			10 5					20 7					40 11		
Required torque																	
Required torque Mortar filling quantity Anchor size						M 8			1					M 10	11		
Required torque Mortar filling quantity					5 gvz			A4	С	7		gvz			11 A4		С
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade		[scale units]	5.8		5	10.		A4 A4-70	C 1.4529	7	5.8	gvz 8.8		10.9	11		C 1.4529
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth	h _{ef}	[scale units]	5.8		5 gvz		9			7	5.8				11 A4		
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth		[scale units]	5.8		5 gvz	10. 160	9			7	5.8			10.9	11 A4		
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth	h _{ef}	[scale units]	5.8		5 gvz	10.	9			7	5.8			10.9	11 A4		
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth Drill hole diameter Mean ultimate loads N _u and V _u [kN]	h _{ef}	[scale units] [mm] [mm] [mm]			5 gvz 8.8	10. 160 24		A4-70	1.4529	7 h _o = h _{ef}		8.8		10.9 200	11 A4		
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile 0°	h _{ef}	[scale units] [mm] [mm]	82.0*		5 gvz	10. 160		A4-70	1.4529	7 B h _o = h _{ef}	127.0*	182.0*	11	10.9 200 32 32.2*	11 A4	171.0*	
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth Drill hole diameter Mean ultimate loads N _u and V _u [kN]	h _{ef}	[scale units] [mm] [mm] [mm]			5 gvz 8.8	10. 160 24	3*	A4-70	1.4529	7 B h _o = h _{ef}		8.8	11	10.9 200	11 A4		
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile 0°	h _{ef} h _o d _o	[scale units] [mm] [mm] [mm]	82.0*		5 gvz 8.8	10.1 160 24	3*	A4-70	1.4529	7 B h _o = h _{ef}	127.0*	182.0*	11	10.9 200 32 32.2*	11 A4	171.0*	
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile 0° Shear 90°	h _{ef} h _o d _o	[scale units] [mm] [mm] [mm]	82.0*		5 gvz 8.8	10.1 160 24	3*	A4-70	1.4529	7 B h _o = h _{ef}	127.0*	182.0*	11	10.9 200 32 32.2*	11 A4	171.0*	
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear 90° Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Shear 90°	h _{ef} h _o d _o N _u V _u	[scale units] [mm] [mm] [mm] [kN]	82.0*		5 gvz 8.8	10.1 160 24 109. 62.7	3*	A4-70	1.4529	7 B h _o = h _{ef}	127.0*	182.0*	11 9	32 32 32.2* 11.1*	11 A4	171.0*	
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile Shear 90° Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile 0° Shear 90° Recommended loads N _{rec} and V _{rec} [kN]	h _{ef} h _o d _o Nu V _u NRd	[scale units] [mm] [mm] [mm] [kN] [kN]	82.0* 40.7*		9vz 8.8 109.0* 62.7*	10.1 160 24 109.62.7 41.7	3*	A4-70	0.0*	7 B h _o = h _{ef}	127.0* 63.6*	182.0* 91.1*	11 9	32 32.2* 11.1* 63.9 60.7	A4 A4-70	171.0*	1.4529
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Shear 90° Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Shear O° Shear O° Shear O° Shear O°	h _{ef} h _o d _o N _u V _u N _{Rd} V _{Bd}	[scale units] [mm] [mm] [mm] [kN] [kN] [kN]	82.0* 40.7* 32.6		9vz 8.8 109.0* 62.7*	10.160 24 109.62.7 41.7 41.2	3* ***	11 54 35.1	0.0* 43.9	7 B h _o = h _{ef}	127.0* 63.6* 50.9	182.0* 91.1*	11 9	32 32.2* 11.1* 63.9 60.7 45.6	A4 A4-70	171.0*	68.6
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Shear Pecommended loads N _{ree} and V _{rec} [kN] Tensile O° Shear Recommended loads N _{ree} and V _{rec} [kN] Tensile O°	h _{ef} h _o d _o N _u V _u N _{Rd} V _{Rd} N _{rec} V _{rec}	[scale units] [mm] [mm] [mm] [kN] [kN] [kN]	82.0* 40.7*		9vz 8.8 109.0* 62.7*	10.1 160 24 109.62.7 41.7	3* ***	A4-70	0.0*	7 B h _o = h _{ef}	127.0* 63.6*	182.0* 91.1*	11 9	32 32.2* 11.1* 63.9 60.7	A4 A4-70	171.0*	1.4529
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Shear Pecommended loads N _{ree} and V _{ree} [kN] Tensile O°	h _{ef}	[scale units] [mm] [mm] [kN] [kN] [kN] [kN]	82.0* 40.7* 32.6		5 gvz 8.8 109.0* 62.7* 50.2	10.0 160 24 109. 62.7 41.7 41.2 29.8 29.8	3*	111 54 35.1	0.0* 43.9	7 0 h _o = h _{ef}	127.0* 63.6* 50.9	8.8 182.0* 91.1* 60.7	111 9	32 32.2* 11.1* 63.9 60.7 45.6 43.4	A4 A4-70	171.0*	68.6
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Shear Pecommended loads N _{ree} and V _{rec} [kN] Tensile O° Shear Recommended loads N _{ree} and V _{rec} [kN] Tensile O°	h _{ef} h _o d _o N _u V _u N _{Rd} V _{Rd} N _{rec} V _{rec}	[scale units] [mm] [mm] [mm] [kN] [kN] [kN]	82.0* 40.7* 32.6		9vz 8.8 109.0* 62.7*	10.160 24 109.62.7 41.7 41.2	3*	11 54 35.1	0.0* 43.9	7 0 h _o = h _{ef}	127.0* 63.6* 50.9	182.0* 91.1*	111 9	32 32.2* 11.1* 63.9 60.7 45.6	A4 A4-70	171.0* 85.7*	68.6
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Shear Pecommended loads N _{ree} and V _{rec} [kN] Tensile O° Shear Recommended loads N _{ree} and V _{rec} [kN] Tensile O°	h _{ef} h ₀ d ₀ N _U V _U N _{Rd} V _{Rd} V _{Rd} N _{rec} V _{rec} n] M _{rec} M _{rec} N _{rec}	[scale units] [mm] [mm] [kN] [kN] [kN] [kN] [kN]	82.0* 40.7* 32.6 23.3		5 gvz 8.8 109.0* 62.7* 50.2	10.0 160 24 109. 62.7 41.7 41.2 29.8 29.8	3*	111 54 35.1	0.0* 43.9	7 0 h _o = h _{ef}	127.0* 63.6* 50.9	8.8 182.0* 91.1* 60.7	111 9	32 32.2* 11.1* 63.9 60.7 45.6 43.4	11 A4 A4-70 54.9	171.0* 85.7*	68.6
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Shear G° Shear Shear G° Shear	h _{ef} h ₀ d ₀ N _U V _U N _{Rd} V _{Rd} N _{rec} V _{rec} n] M _{rec} M _{rec} N _{rec}	[scale units] [mm] [mm] [kN] [kN] [kN] [kN] [kN]	82.0* 40.7* 32.6 23.3		5 gvz 8.8 109.0* 62.7* 50.2	10.0 160 24 109. 62.7 41.7 41.2 29.8 29.8	3*	111 54 35.1	0.0* 43.9	7 0 h _o = h _{ef}	127.0* 63.6* 50.9	8.8 182.0* 91.1* 60.7	111 9	32 32.2* 11.1* 63.9 60.7 45.6 43.4	11 A4 A4-70 54.9	171.0* 85.7*	68.6
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Shear 90° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN]	h _{ef} h _o d _o N _u V _u N _{Rd} V _{Rd} N _{rec} V _{rec} n] M _{rec} s and et	[scale units] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN] [kN]	82.0* 40.7* 32.6 23.3		5 gvz 8.8 109.0* 62.7* 50.2	103. 160 24 109. 62.7 41.7 41.3 29.8 29.8 158	3*	111 54 35.1	0.0* 43.9	7 0 h _o = h _{ef}	127.0* 63.6* 50.9	8.8 182.0* 91.1* 60.7	111 9	32 32.2* 11.1* 63.9 60.7 45.6 13.4 08.6	11 A4 A4-70 54.9	171.0* 85.7*	68.6
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Shear G° Shear Shear G° Shear	h _{ef} h _o d _o N _U V _U NRd VRd Nrec Vrec n] Mrec s and et	[scale units] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN	82.0* 40.7* 32.6 23.3		5 gvz 8.8 109.0* 62.7* 50.2	103. 160 24 109. 62.7 41.7 41.3 29.8 29.3 158	3*	111 54 35.1	0.0* 43.9	7 0 h _o = h _{ef}	127.0* 63.6* 50.9	8.8 182.0* 91.1* 60.7	111 9	32 32.2* 11.1* 63.9 60.7 45.6 13.4 08.6 590	11 A4 A4-70 54.9	171.0* 85.7*	68.6
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [Nn] Tensile O° Shear GO° Recommended bending moment M _{rec} [Nn] Component dimensions, minimum spacing Characteristic spacing Characteristic edge distance	h _{ef} h _o d _o N _U V _U NRd VRd Nrec Vrec n] Mrec is and et	[scale units] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [mm] [mm]	82.0* 40.7* 32.6 23.3		5 gvz 8.8 109.0* 62.7* 50.2	10.1 160 24 109. 62.7 41.7 41.2 29.8 29.8 158 480 240	3*	111 54 35.1	0.0* 43.9	7 0 h _o = h _{ef}	127.0* 63.6* 50.9	8.8 182.0* 91.1* 60.7	111 9	32 32.2* 11.1* 63.9 60.7 45.6 13.4 08.6 590 295	11 A4 A4-70 54.9	171.0* 85.7*	68.6
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [Nn] Tensile O° Chear 90° Recommended bending moment M _{rec} [Nn] Component dimensions, minimum spacing Characteristic spacing Characteristic edge distance Minimum spacing ¹⁾	Nu Vu NRd Nrec Vrec n] Mrec Scr. N CCr. N Smin Cmin	[mm] [mm] [kN] [kN] [kN] [kN] [kN] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	82.0* 40.7* 32.6 23.3		5 gvz 8.8 109.0* 62.7* 50.2	10 160 24 109 62.7 41.7 41 29.8 29 158 480 240 80	3*	111 54 35.1	0.0* 43.9	7 0 h _o = h _{ef}	127.0* 63.6* 50.9	8.8 182.0* 91.1* 60.7	11 9	10.9 200 32 32 32.2* 11.1* 63.9 60.7 45.6 43.4 65.6	11 A4 A4-70 54.9	171.0* 85.7*	68.6
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN]	hef ho do Nu Vu NRd VRd Nrec Vrec n] Mrec s and et scr. N Smin	[scale units] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	82.0* 40.7* 32.6 23.3		5 gvz 8.8 109.0* 62.7* 50.2	10.1 160 24 109.62.7 41.7 41.8 29.8 29.1 158 480 240 80 80	3*	111 54 35.1	0.0* 43.9	7 0 h _o = h _{ef}	127.0* 63.6* 50.9	8.8 182.0* 91.1* 60.7	11 9	10.9 200 32 32.2* 11.1* 63.9 60.7 45.6 13.4 65.9 65.0 65.	11 A4 A4-70 54.9	171.0* 85.7*	68.6
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN]	hef ho do Nu Vu NRd Nrec Vrec n] Mrec s and et scr N Smin Cmin hmin	[scale units] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	82.0* 40.7* 32.6 23.3		5 gvz 8.8 109.0* 62.7* 50.2	103. 160 24 109. 62.7 41.7 41.7 29.8 158 480 240 80 205	3*	111 54 35.1	0.0* 43.9	7 0 h _o = h _{ef}	127.0* 63.6* 50.9	8.8 182.0* 91.1* 60.7	11 9	10.9 200 32 32.2* 11.1* 63.9 60.7 45.6 13.4 6590 295 125 125 260 600	11 A4 A4-70 54.9	171.0* 85.7*	68.6
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN] Tensile O° Recommended bending moment M _{rec} [Nn Component dimensions, minimum spacing Characteristic spacing Characteristic edge distance Minimum spacing '' Minimum edge distance '' Minimum edge distance '' Minimum structural component thickness Minimum screw penetration depth	Nu Vu NRd VRd Nrec Vrec s and et a Scr. N Smin Cmin hmin max l s	[scale units] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	82.0* 40.7* 32.6 23.3		5 gvz 8.8 109.0* 62.7* 50.2	109. 62.7 41.7 41.3 29.8 29.1 158 480 240 80 205 24	3*	111 54 35.1	0.0* 43.9	7 0 h _o = h _{ef}	127.0* 63.6* 50.9	8.8 182.0* 91.1* 60.7	11 9	10.9 200 32 32 32 32 32 32 3	11 A4 A4-70 54.9	171.0* 85.7*	68.6
Required torque Mortar filling quantity Anchor size Kind of steel Steel grade Effective anchorage depth Drill hole diameter Mean ultimate loads N _u and V _u [kN] Tensile O° Shear Design resistant loads N _{Rd} and V _{Rd} [kN] Tensile O° Recommended loads N _{rec} and V _{rec} [kN]	Nu Vu NRd Nrec Vrec s and et a Scr. N Smin Cmin hmin max ls min ls	[scale units] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	82.0* 40.7* 32.6 23.3		5 gvz 8.8 109.0* 62.7* 50.2	109. 62.7 41.7 41.3 29.8 29.1 158 480 240 80 205 24 35	3*	111 54 35.1	0.0* 43.9	7 0 h _o = h _{ef}	127.0* 63.6* 50.9	8.8 182.0* 91.1* 60.7	11 9	10.9 200 32 32 32 32 32 32 3	11 A4 A4-70 54.9	171.0* 85.7*	68.6

^{*}Steel failure decisive.

All values apply for concrete C20/25 without edge or spacing influences.

Design resistant loads: material safety factor Y_M is included. Material safety factor Y_M depends on the type of anchor.

Recommende loads: material safety factor Y_M and safety factor for load Y_L = 1.4 are included.

The condition of application differ from those given in the European Technical Approval (ETA). For further detailed information about the ETA please contact the fischer technical service department. Higher loads are available using Premium Cleaning methods. Please contact Technical Department for details on 01491 827920.

¹⁾ for minimum spacing and minimum edge distance the above described loads and have to be reduced (see "fischer Technical Handbook" or "fischer Design software COMPUFIX")

Values given above are vaild under the following assumptions: - Sufficient mechanical cleaning of the drill hole using stainless steel brushes.

⁻ Dry concrete, temperature range $50^\circ c$ long tem temperature and $80^\circ C$ short term temperature.

Injection Set FIS

The expansion-free anchoring for the professional user.

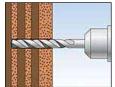
OVERVIEW

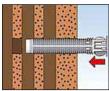
FIS Set 16x130 M10/20

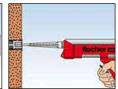
FIS Set 20x200 M12/15

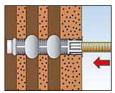
With anchor sleeve suitable for:

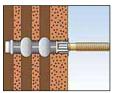
- · Vertically perforated bricks
- Perforated sand-lime brick
- Hollow blocks
- Solid brick
- Solid sand-lime brick
- Hollow pumice plank
- Slabs made of perforated bricks and other perforated blocks


For fixing of:


- Machines
- Gratings
- Gates
- Hand-rails
- Consoles
- Pipelines
- Sanitary equipment
- Cable trays
- Facades
- Awnings
- Canopies
- Wooden constructions


Without anchor sleeve suitable for:


- · Lightweight concrete
- Solid bick
- Solid sand-lime bricks
- Full pumice stone and other solid building materials
- Aerated concrete


INSTALLATION

TECHNICAL DATA

			IIIJECI	IUII SEIS LIS)										
Туре	ArtNo. IC		Art.		Type #		Type ArtNo.		ArtNo. ID drill Ø		ArtNo. ID drill Ø thread min drill hole min anchorage depth depth sleeve		min anchorage depth contents anchor		
				mm		mm	mm	mm							
FIS Set 16 x 130 M10/20		41857	-	16	M10	140	130	130	10 x Threaded rod M10x160 4.8, 10 x Plastic Sleeve, 10 x Nut and Washer						
FIS Set 20 x 200 M12/15		43681	-	20	M12	210	200		10 x Threaded rod M12x225 5.8, 10 x FIS H, 10 x Nut and Washer						

Injection technique for aircrete

The expansion-free high-performance fixing for aircrete.

OVERVIEW

Cone drill PBB

Centring sleeve **PBZ**

Threaded rod FIS A, zinc-plated steel

Threaded rod FIS A, stainless steel A4

Approved for:

- Block- and plan bricks
- Roof- and ceiling tiles made of aerated cement

For fixing of:

- Facade and roof substructures made of wood and metal
- Canopies
- Gratings
- Hand-rails
- Consoles
- Pipelines
- Sanitary equipment
- Suspended ceilings
- Cable trays
- Steel and wooden constructions in general

(For F120 use FIS V Resins)

Approval:

 German approval (DIBt) and fire for aerated concrete in conjunction with Injection mortar FIS V, Cone drill PBB, Centring sleeve PBZ and threaded rod FIS A.

DESCRIPTION

- Centring sleeve and cone drill bit specially for use with Injection mortars FIS V, FIS VS, FIS VT and FIS P in aerated cement.
- The special undercut drill bit PBB produces a conical drillhole in aerated cement.
- The centring sleeve fixes the threaded rod in the drilled hole and allows overhead installation.
- The injection mortar anchors by means of undercut technology in the conical hole. This provides better distribution of forces in aerated cement than in cylindrical drill holes.
- Can be used with threaded rods FIS A.
- Threaded rod FIS A made of A4 stainless steel for outdoor use and in damp conditions.

Advantages/Benefits

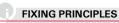
- Undercut technology of the mortar guarantees high loads in aerated cement.
- Sturdy, long-life drill bit for high cost-efficiency.
- Two adjustable drilling depths increase flexibility on site (e.g. higher loads, plaster covering).
- Small drill diameter enables economical use of mortar.

INSTALLATION

Type of installation

Pre-positioned installation

in aerated cement with fischer cone drill



LOADS

Recommended loads per fixing for tension, shear and oblique tension at any angle well as the associated fixing parameters and structural component dimensions.

Fixing type FIS A			M8 / M1	IO / M12
Anchorage depth	h _v	[mm]	75	95
Recommended load [in kN] in aircrete				
Blocks P2 / P 4 / P6		[kN]	0.9 / 1.2 / 1.6	1.3 / 1.7 / 2.1
Wall panels G 2.2 / G 3.3 / G 4.4		[kN]	0.9 / 1.2 / 1.4	1.4 / 1.6 / 1.9
Reinforced roof and ceiling plates ¹⁾ G 2.2 / G 3.3 / G 4.4		[kN]	0.9 / 1.2 / 1.4	1.4 / 1.6 / 1.9
Recommended load (fixing group)		[kN]	2.6	2.6
Minimum intermediate distance	a _Z	[mm]	250	250
Axial spacing (fixing group) 1)	≧ a / min a	[mm]	200 / 50	250 / 50
Edge distance	≧ a _r	[mm]	200	300
Minimum structural component thickness	d	[mm]	110	110
No. of scale units on cartridge			арргох. 15	approx. 20

¹⁾ With groups of two and four fixings, the axial distance a may be reduced down to min a if the permissible loads are reduced (except reinforced roofs and ceiling plates).

Resin anchor R (Eurobond)

The expansion-free anchoring in non-cracked concrete.

OVERVIEW

Resin capsule R M

Threaded rod RG M, zinc-plated steel

Threaded rod RG M A4 / C stainless steel A4 or highly corrosionresistant steel

Approved for:

 Non-cracked concrete ≧ C12/15 and maximum C50/60

Also suitable for:

Natural stone with dense structure

For fixing of:

- Steel constructions
- Railings
- Consoles
- Ladders
- Cable trays Machines
- Staircases
- Gates
- Facades
- High racks
- Stand-off installations
- Wooden constructions

DESCRIPTION

- This tried and tested fixing system consists of the RG M threaded and resin capsule RM.
- The 2-component resin capsule RM contains quick-setting styrene-free vinyl ester resin and hardener.
- During setting, the tip of the threaded rod destroys the capsule in the drill hole, which mix and activate the mortar.
- The resin adheres to the entire surface of the threaded rod, bonding it to the wall of the drilled hole.

Advantages/Benefits

- Threaded rods are supplied with an easy to use hexagonal installation drive or can be installed with an adapter.
- · High-performance resin guarantees high loads in noncracked concrete.
- The resin anchoring is free of expansion forces and permits small axial spacings and edge distances.
- Wide range for many applications.
- New European design method enables optimum use of the anchor system for cost-efficient fixing.

INSTALLATION

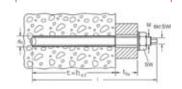
Type of installation

Pre-positioned installation

Installation information

- · Suitable for use in wet concrete and
- Threaded rod must be installed with an impact-rotational process by using an electric tool (percussion drill, hammer

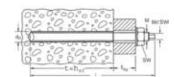
For brushes please see page 32



Resin anchor R (Eurobond)

TECHNICAL DATA

- 360 Hit 12	Re	Resin capsule R M											
Туре	ArtNo.	ID	approval	drill-Ø	min. drill hole depth	effect. anchorage depth	fits	qty. per box					
			● DIBt ■ ETA	d_0	t	h _{ef}							
				[mm]	[mm]	[mm]		pcs.					
R M 8	50270	9	•	10	80	80	RG M 8	10					
R M 10	50271	6	•	12	90	90	RG M 10	10					
R M 12	50272	3	•	14	110	110	RG M 12	10					
R M 14	50278	5		16	120	120	RG M 14	10					
R M 16	50273	0	•	18	125	125	RG M 16	10					
R M 16 E	79838	6		18	190	190	RG M 16 E	10					
R M 20	50274	7	•	25	170	170	RG M 20	10					
R M 20 E	79840	9		25	240	240	RG M 20 E	5					
R M 24	50275	4	•	28	210	210	RG M 24	5					
R M 24 E	79842	3		28	290	290	RG M 24 E	5					
R M 27	79843	0		32	250	250	RG M 27	5					
R M 30	50276	1	•	35	280	280	RG M 30	5					


Туре		ArtNo.	ID	approval	effect. anchorage depth	max. usable length	external hexagon head	width across nut	fits capsules	qty. per box
				● DIBt ■ ETA	h _{ef}	t fix		○ SW		
					[mm]	[mm]	[mm]	[mm]		pcs.
RG M 8 x 110		50256	3	•	80	13	5	13	50270 RM 8	10
RG M 8 x 150		95698	4	•	80	60	5	13	50270 RM 8	10
RG M 8 x 250		95699	1	•	80	160	5	13	50270 RM 8	10
RG M 10 x 130		50257	0	•	90	20	7	17	50271 RM 10	10
RG M 10 x 165		50280	8	•	90	57	7	17	50271 RM 10	10
RG M 10 x 190		50281	5	•	90	82	7	17	50271 RM 10	10
RG M 10 x 250		95703	5	•	90	150	7	17	50271 RM 10	10
RG M 10 x 350		95718	9	•	90	250	7	17	50271 RM 10	10
RG M 12 x 160		50258	7	•	110	25	8	19	50272 RM 12	10
RG M 12 x 220		50283	9	•	110	90	8	19	50272 RM 12	10
RG M 12 x 250		50284	6	•	110	120	8	19	50272 RM 12	10
RG M 12 x 300		50285	3	•	110	170	8	19	50272 RM 12	10
RG M 12 x 380	2)	95720	2	•	110	255	-	19	50272 RM 12	10
RG M 14 x 170		50286	0		120	38	10	22	50278 RM 14	10
RG M 16 x 165		50287	7	•	125	13	12	24	50273 RM 16	10
RG M 16 x 190		50259	4	•	125	35	12	24	50273 RM 16	10
RG M 16 x 250		50288	4	•	125	98	12	24	50273 RM 16	10
RG M 16 x 300		50289	1	•	125	148	12	24	50273 RM 16	10
RG M 16 x 380	2)	95722	6	•	125	235	-	24	50273 RM 16	10
RG M 16 x 500	2)	95723	3	•	125	355	-	24	50273 RM 16	10
RG M 16 x 235 E		90716	0		190	20	12	24	79838 RM 16 E	10
RG M 16 x 275 E		90717	7		190	60	12	24	79838 RM 16 E	10
RG M 20 x 260		50260	0	•	170	65	12	30	50274 RM 20	10
RG M 20 x 350		95707	3	•	170	155	12	30	50274 RM 20	10
RG M 20 x 500	1)	95725	7	•	170	305	-	30	50274 RM 20	10
RG M 20 x 330 E		90718	4		240	60	12	30	79840 RM 20 E	10
RG M 24 x 300	1)	50261	7	•	210	65	-	36	50275 RM 24	10
RG M 24 x 400	1)	95727	1	•	210	165	-	36	50275 RM 24	10
RG M 24 x 600	1)	95728	8	•	210	365	-	36	50275 RM 24	5
RG M 24 x 380 E	1)	90719	1		290	60	=	36	79842 RM 24 E	5
RG M 27 x 340	1)	90720	7		250	60	=	41	79843 RM 27	5
RG M 30 x 380	1)	50262	4	•	280	65	-	46	50276 RM 30	5
RG M 30 x 500	1)	95730	1	•	280	185	-	46	50276 RM 30	5

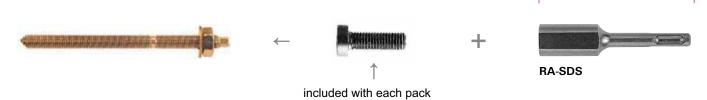
¹⁾ Straight cut, additional setting tool required (see page 66).

²⁾ Straight cut, setting tool is enclosed.

T		A . A		less steel A4	m		5.4	3	rrosion-resistant s	
Туре		ArtNo.	ID	approval	effect. anchorage depth	max. usable length	external hexagon head	width across nut	fits capsules	qty. per box
				● DIBt ■ ETA	h _{ef}	t fix		○SW		
					[mm]	[mm]	[mm]	[mm]		pcs.
RG M 8 x 110 A4		50263	1	•	80	13	5	13	50270 RM 8	10
RG M 8 x 150 A4		50293	8	•	80	60	5	13	50270 RM 8	10
RG M 8 x 250 A4		95700	4	•	80	160	5	13	50270 RM 8	10
RG M 8 x 350 A4		95708	0	•	80	260	5	13	50270 RM 8	10
RG M 10 x 130 A4		50264	8	•	90	20	7	17	50271 RM 10	10
RG M 10 x 165 A4		50294	5	•	90	57	7	17	50271 RM 10	10
RG M 10 x 190 A4		50296	9	•	90	82	7	17	50271 RM 10	10
RG M 10 x 250 A4		95701	1	•	90	150	7	17	50271 RM 10	10
RG M 10 x 350 A4		95709	7	•	90	250	7	17	50271 RM 10	10
RG M 12 x 160 A4		50265	5	•	110	25	8	19	50272 RM 12	10
RG M 12 x 220 A4		50297	6	•	110	90	8	19	50272 RM 12	10
RG M 12 x 250 A4		95702	8	• •	110	120	8	19	50272 RM 12	10
RG M 12 x 300 A4		95705	9	• •	110	170	8	19	50272 RM 12	10
RG M 12 x 380 A4	2)	95710	3	• •	110	255	-	19	50272 RM 12	10
RG M 12 x 600 A4	2)	95711	0	•	110	475	-	19	50272 RM 12	10
RG M 16 x 165 A4		95704	2	•	125	13	12	24	50273 RM 16	10
RG M 16 x 190 A4		50266	2	• •	125	35	12	24	50273 RM 16	10
RG M 16 x 250 A4		50298	3	• •	125	98	12	24	50273 RM 16	10
RG M 16 x 300 A4		50299	0	• ■	125	148	12	24	50273 RM 16	10
RG M 16 x 380 A4	2)	95712	7	• •	125	235	-	24	50273 RM 16	10
RG M 16 x 500 A4	2)	95713	4	•	125	355	-	24	50273 RM 16	10
RG M 16 x 235 E A4		90721	4		190	20	12	24	79838 RM 16 E	10
RG M 16 x 275 E A4		90722	1		190	60	12	24	79838 RM 16 E	10
RG M 20 x 260 A4		50267	9	•	170	65	12	30	50274 RM 20	10
RG M 20 x 350 A4		95706	6	•	170	155	12	30	50274 RM 20	10
RG M 20 x 330 E A4		90723	8		240	60	12	30	79840 RM 20 E	10
RG M 24 x 300 A4	1)	50268	6	•	210	65	-	36	50275 RM 24	10
RG M 24 x 400 A4	1)	95715	8	•	210	165	-	36	50275 RM 24	10
RG M 24 x 380 E A4	1)	90724	5		290	60	-	36	79842 RM 24 E	5
RG M 27 x 340 A4	1)	90725	2		250	60	-	41	79843 RM 27	5
RG M 30 x 380 A4	1)	90726	9	•	280	65	-	46	50276 RM 30	5
RG M 8 x 110 C		96316	6	• ■	80	13	5	13	50270 RM 8	10
RG M 10 x 130 C		96217	6	•	90	20	7	17	50271 RM 10	10
RG M 12 x 160 C		96218	3	•	110	25	8	19	50272 RM 12	10
RG M 16 x 190 C		96219	0	•	125	35	12	24	50273 RM 16	10

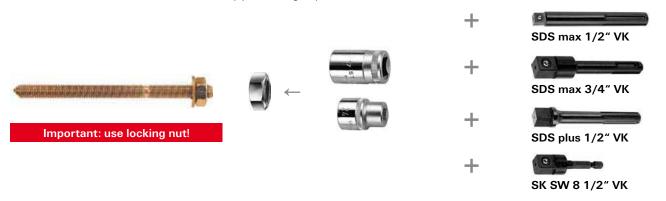
CURING TIME

Curing time Resin capsule RM


Temperature at anchoring base	Curing time
- 5°C - ± 0°C	240 min.
± 0°C - + 10°C	45 min.
+10°C - +20°C	20 min.
≧ + 20°C	10 min.

Please note: The curing times apply for dry anchoring bases. In damp anchoring bases they should be doubled. Remove water from drill hole.

Straight cut, additional setting tool required (see page 66).
 Straight cut, setting tool is enclosed.


Resin anchor R (Eurobond)

TECHNICAL DATA

Adapter for installing anchor rods

Threaded rods without external hex-drive (special lengths).

Туре	ArtNo.	ID		qty. per box
				pcs.
RA-SDS	62420	3	Adapter suitable for set screw	1
SK SW 8 1/2" VK	01536	1	Adapter suitable fits threaded rods M8 - M22	1
SDS plus 1/2" VK	01537	8	Adapter suitable fits threaded rods M8 - M16	1
SDS max 1/2" VK	01538	5	Adapter suitable fits threaded rods M16 - M20	1
SDS max 3/4" VK	01539	2	Adapter suitable fits threaded rods M20-M30	1

LOADS

Mean ultimate loads, design resistant and recommended loads for single anchors of fischer Resin anchor R with large axial spacing and edge distance.

								Non-crack	ed concrete			
Anchor size					M 8	M 10	M 12	M 16	M 20	M 24	M 27	M30
Effektive anchorage depth		h _{ef}	[mm]		80	90	110	125	170	210	250	280
Drill hole depth		h ₀ ≧	[mm]		80	90	110	125	170	210	250	280
Drill hole diameter		d _O	[mm]		10	12	14	18	25	28	32	35
Mean ultimate loads N _u and V _u [kN]												
Tensile	0°	N	[kN]	gvz	19.0*	30.2*	43.8*	80.1	127.4*	183.6*	238.7*	271.6
rensile	U	N _u	[kN]	A4/C	25.6*	40.6*	50.4	80.1	128.0	186.0	276.8	271.6
CL	90°	V	[kN]	gvz	11.4*	18.1*	26.3*	49.0*	76.4*	110.1*	143.2*	175.0*
Shear	90-	V _u	[kN]	A4/C	15.4*	24.4*	35.4*	65.9*	102.9*	148.3*	192.8*	235.6*
Design resistant loads N _{Rd} and V _{Rd}	[kN]											
T 1	N۰		[kN]	gvz	11.7	16.4	24.1	36.6	62.1	92.1	121.6	119.2
Tensile	U°	N_{Rd}	[kN]	A4/C	11.7	16.4	24.1	36.6	62.1	92.1	121.6	119.2
			[kN]	gvz	7.6	12.1	17.5	32.7	51.0	73.4	95.5	116.7
Shear	90°	V_{Rd}	[kN]	A4	8.2	13.0	18.9	35.2	55.0	79.2	103.0	125.9
		110	[kN]	С	10.2	16.2	23.6	44.0	68.6	98.8	-	157.1
Recommended loads N _{rec} and V _{rec} [I	kN] as a	single f	ixing									
Taballa	0°	N	[kN]	gvz	8.3	11.7	17.2	26.1	44.4	65.8	86.9	85.2
Tensile	U	N_{rec}	[kN]	A4/C	8.3	11.7	17.2	26.1	44.4	65.8	86.9	85.2
			[kN]	gvz	5.4	8.6	12.5	23.3	36.4	52.4	68.2	83.3
Shear	90°	V_{rec}	[kN]	A4	5.9	9.3	13.5	25.2	39.3	56.6	73.6	89.9
			[kN]	С	7.3	11.6	16.9	31.4	49.0	70.6	-	112.2
Recommended bending moment M _{rec}	[Nm], \	alid for	standar	d thread	ed rods with str	ength classification	n 5.8 and A4-70	and "C"				
			[Nm]	gvz	10.9	22.3	39.4	98.9	193.1	333.7	496.0	668.0
		M_{rec}	[Nm]	A4	11.9	23.8	42.1	106.7	207.9	359.9	533.9	720.7
			[Nm]	С	14.9	29.7	52.6	133.1	259.4	449.1	_	899.4
Component dimensions, minimum axi	ial spaciı	ngs and	edge di	stances								
Min. axial spacing 1)		Smin	[mm]		40	45	55	65	85	105	125	140
Min. edge distance 1)		Cmin	[mm]		40	45	55	65	85	105	125	140
Min. structural component thickness		h _{min}	[mm]		130	140	160	175	220	260	300	330
Required torque		T _{inst}	[Nm]		10	20	40	60	120	150	200	300

Steel failure, valid for standard threaded rods RGM with strength classification 5.8 and A4-70 (stainless steel A4) and C (highly corrosion resistant).

All load values apply for concrete C 20/25 without edge or spacing influence.

Design resistant loads: material safety factor γ_M is included. Material safety factor γ_M depends on type of anchor.

Recommended loads: material safety factor γ_M and safety factor for load γ_L = 1.4 are included.

The conditions of application differ from those given in the European Technical Approval. For further detailed information about the ETA please contact the fischer technical service department.

Higher loads are available using Premium Cleaning methods. Please contact Technical Department for details on 01491 827920.

For min. axial spacing and min. edge distance the above described loads have to be reduced! (see "Technical Handbook" or design software "CC-Compufix")

Hammer-set glass capsule FHP

For safe post-fixing of connection reinforcement.

OVERVIEW

Hammer-set glass capsule **FHP**

Suitable for:

- Natural stone with dense structure

For fixing of:

Reinforcement bars

DESCRIPTION

- The twin-chamber glass capsule contains styrene-free vinylester mortar and hardener.
- The glass capsule is destroyed when the reinforcement bar is hammered in so the special quick-curing mortar is activated.
- The mortar adheres to the entire surface of the reinforcement bar, bonding it to the wall of the drilled hole.

Advantages/Benefits

- Special resin for high-performance anchoring of reinforcement bars.
- Simple and quick installation of the reinforcement bar reduces the work involved.
- No special tools necessary.
- Defined resin quantity in the capsule for cost-efficient anchorage.
- Can be used in damp concrete.

INSTALLATION

Installation tip

 Larger anchorage depths are possible with the use of more than one capsule.

For the anchoring of reinforcement bars according to the approval of building authorities we recommend the fischer Injection system FIS V (see page 37).

TECHNICAL DATA

Ø € FH	P 10	Hammer-set	glass capsule FHP				
Туре	ArtNo.	ID	fits to bars	drill-Ø	drill hole depth	capsules per bar	qty. per box
				d ₀	hO		
			[mm]	[mm]	[mm]		pcs.
FHP 10	52520	3	10	13	180/90	2/1	10
FHP 12	52521	0	12	15	220/110	2/1	10
FHP 16	52522	7	14 / 16	18 / 20	250/125 + 280/140	2/1	10
FHP 20	52523	4	20	24	360/180	2/1	10

CURING TIME

Curing time Hammer-set glass capsule FHP

Temperature at anchoring base	Curing time
- 5°C ± 0°C	300 min.
± 0°C+10°C	60 min.
+10°C +20°C	30 min.
≧20°C	20 min.

LOADS

Mean ultimate loads and recommended loads for single anchors of fischer Hammer-set glass capsule FHP with large axial spacing and edge distance

			Non-cracked concrete								
Capsule type			FHI	P 10	FHP	12	FHP 16	FHI	P 16	FHF	P 20
Rebar diameter		[mm]	1	0	1:	2	14	1	6	2	.0
Number of capsules			2	1	2	1	2	2	1	2	1
Drill hole depth	ho	[mm]	180	90	220	110	250	280	140	360	180
Drill hole diameter	do	[mm]	13	13	15	15	18	20	20	24	24
Mean ultimate loads N _u [kN]											
Tensile	N _u	[kN]	39.2*	29.5	56.5*	42.5	77.0*	100.5*	71.0	157.0*	106.0
Design resistant loads N _{Rd} [kN]											
Tensile	N _{Rd}	[kN]	16.8	7.7	22.4	12.6	31.5	37.8	16.8	53.2	30.8
Recommended loads N _{rec} [kN]											
Tensile	N _{rec}	[kN]	12.0	5.5	16.0	9.0	22.5	27.0	12.0	38.0	22.0
Component dimensions, minimum axial spa	acings and ed	dge dist	ances								
Min. axial spacing ¹⁾	Smin	[mm]	60	60	70	70	90	100	100	130	130
Min. edge distance ¹⁾	c _{min}	[mm]	60	60	70	70	90	100	100	130	130
Min. structural component thickness	h _{min}	[mm]	230	140	270	160	310	340	200	440	270

^{*} steel failure, values apply to reinforcement with a yield strength f_{Vk} = 420 N/mm² and an ultimate strength f_{uk} = 500 N/mm². For min. axial spacing and min. edge distance the above described loads have to be reduced!

All load values apply for concrete C20/25 without edge or spacing influence.

Design resistant loads: material safety factor γ_M is included. Material safety factor γ_M depends on type of anchor.

Recommended loads: material safety factor γ_M and safety factor for load γ_L = 1.4 are included.

The loads have to be reduced by 30% if the rebars are set in damp holes.

For detailed design method please contact the fischer technical service department.

Rebar anchor FRA

Welded reinforcement bar with threaded part made of stainless steel.

OVERVIEW

Suitable for:

- Concrete
 - > C12/15 and
 - < C50/60

For fixing of:

- Steel constructions
- Railings
- Consoles
- Canopies
- Machines
- Staircases

DESCRIPTION

- Suitable for cast-in and post-installed rebar connections.
- Thread diameters M12, M16, M20, M24 and M30.
- Suitable for end anchorage and overlap connections.
- Angled hooks, etc. can be used in cast-in installation.

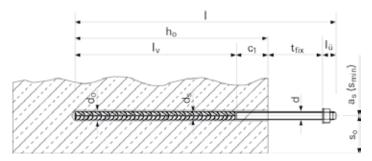
Advantages/benefits

- Overlap connections allow the highest recommended tensile loads with small axial spacings and edge distances.
- Post-installed rebar connection provide flexible planning.

INSTALLATION

Type of installation

Pre-positioned installation



110111111111	9777	(7777)	505	27.00	Comment of the second	Y070 = -	Rebar anchor FRA	
Туре		ArtNo.	ID		total length	max. usable length	drill-hole diameter	qty. per box
					I	t_{fix}	d_0	
					[mm]	[mm]	[Ø mm]	pcs.
FRA 12/600 M12-60	1)	98328	7		675	60	16	8
FRA 16/750 M16-60	1)	98329	4		830	60	20	8
FRA 20/900 M20-60	1)	98330	0		985	60	25	4
FRA 25/ M24	2)				variable	variable	30	-
FRA 28/ M30	2)				variable	variable	35	-

1) Further sizes on request.

²⁾ On request.

LOADS

Design resistance

Туре		FRA 12/600	FRA 16/750	FRA 20/900	FRA 25/1050*	FRA 28/1050*
		M12-60	M16-60	M20-60	M24 - t _{fix}	M30 - t _{fix}
maximim tension load	N _{Rd,s} [kN]	28.6	55.1	86.0	123.9	139.7
Thread diamater 1)	d	M 12	M 16	M 20	M 24	M 30
Rebar diameter	d _S [mm]	12	16	20	25	28
Drill diameter	do [mm]	16	20	25	30	35

 $^{1)}$ Other thead diamters are possible (M24 bzw. M30 on request).

Characteristics for post-installed Rebar anchors FRA at maximum tension load

Туре		FRA 12/600 M12-60	FRA 16/750 M16-60	FRA 20/900 M20-60	FRA 25/1050* M24 - t _{fix}	FRA 28/1050* M30 - t _{fix}
Bolt projection	l _ü [mm]	15	20	25	30	35
Concrete cover	c ₁ [mm]	50	50	50	50	50
Anchorage length 1)	l _v [mm]	350	480	600	690	690
Lap length	I _s [mm]	550	700	850	1000	1000
Drill hole depth $c_1 + l_v =$	h _O [mm]	600	750	900	1050	1050
Min. axial spacing	s _{min} [mm]	60	80	100	125	140
Min. edge distance (with- / without drill guide)	s _O [mm]	41 / 63	48 / 75	48 / 84	61 / 103	61 / 103
Scale units as per 10 cm drilling depth		approx. 6	approx. 8	approx. 11	approx. 14	approx. 22

Anchorage length according to DIN V ENV 1992 (EC 2), concrete \geq C12/15 for good bond conditions at maximum tension load N_{Rd,s}.

On request.

^{*)} On request.

Reinforcement bars

using the fischer Injection mortar FIS V.

OVERVIEW

For fixing of:

Post-installed rebars

DESCRIPTION

- Resin system for post installation of reinforcement bar anchorages in concrete in conjunction with Injection mortar FIS V
- Defined load-bearing capacity as per approval and secure anchorage like cast-in reinforcement bars to European standard (EC 2) and DIN 1045-1.

Advantages/benefits

- Subsequent and flexible planning enables changes to existing buildings.
- Simple installation procedure reduces work involved and thus costs.
- German official building supervisory approval (DIBt) for reinforcement connections guarantees safety.

INSTALLATION

Installation tips

Cleaning of the drill-hole

 Blow out the drill hole three times from the bottom with a suitable cleaning nozzle (oil-free compressed air at least 6 bar).

- Clamp the extension with a suitable steel brush in the drill.
- Brush out the drill hole three times.
- Blow out the drill hole three times from the bottom with a suitable cleaning nozzle (oil-free compressed air at least 6 bar).

Filling the drill hole

- Place the mortar cartridge in the injection gun.
- Fit the static mixer, extension tube and injection adapter.
- Slowly withdraw the injection gun following the pressure - while filling.

Inserting the reinforcement bar

- Push the reinforcement bar into the filled hole up to the setting depth mark with considerable force, while rotating it.
- Wait for the duration of the curing time.

For the installation according to the approval, a special certification is necessary.

STANDARDS

Reinforcement bars

TECHNICAL DATA

Chemical mortar System case "reinforcement bars"

Туре	ArtNo.	ID	approval	content	qty. per box
			DIBt		
					pcs.
System case for	90173	2	•	Cleaning brush	8
reinforcement				Extensions for cleaning brushes à 40 cm	5
connection				SDS Chuck with internal thread M 8	1
				Injection adapter	8
				Cleaning hose complete	1
				Brush control template	1
				Hacksaw	1
				Cleaning nozzle for drill-Ø 12 - Ø 15	2
				Cleaning nozzle for drill-Ø 16 - Ø 19	2
				Cleaning nozzle for drill-Ø 20 - Ø 25	2
				Cleaning nozzle for drill-Ø 30 - Ø 35	2
				Marker tape (blue)	1
				Assembly instructions	1
				Setting protocol	10
				Flat spanner SW 7	2

*******************	CI	eaning	brush with thread M 8	
Туре	ArtNo. ID		colour	qty. per box
				pcs.
Brush for drill-Ø 12 mm	01490	6	white	1
Brush for drill-Ø 14 mm	01491	3	blue	1
Brush for drill-Ø 16 mm	01492	0	red	1
Brush for drill-Ø 18 mm	01493	7	yellow	1
Brush for drill-Ø 20 mm	01494	4	green	1
Brush for drill-Ø 25 mm	01495	1	black	1
Brush for drill-Ø 30 mm	90063	6	grey	1
Brush for drill-Ø 35 mm	90071	1	brown	1

Injection adapter for drill Ø 12 - 25 mm

Injection adapter for drill Ø 30 - 35 mm

Туре	ArtNo.	ID	colour	qty. per box
				pcs.
Injection-adapter (Ø 9) for drill-Ø 12 mm	01497	5	white	10
Injection-adapter (Ø 9) for drill-Ø 14 mm	01498	2	blue	10
Injection-adapter (Ø 9) for drill-Ø 16 mm	01499	9	red	10
Injection-adapter (Ø 9) for drill-Ø 18 mm	01483	8	yellow	10
Injection-adapter (Ø 9) for drill-Ø 20 mm	01506	4	green	10
Injection-adapter (Ø 9) for drill-Ø 25 mm	01507	1	black	10
Injection-adapter (Ø 15) for drill-Ø 20 mm	01508	8	green	10
Injection-adapter (Ø 15) for drill-Ø 25 mm	01509	5	black	10
Injection-adapter (Ø 9) for drill-Ø 30 mm	90689	8	grey	10
Injection-adapter (Ø 9) for drill-Ø 35 mm	90699	7	brown	10
Injection-adapter (Ø 15) for drill-Ø 30 mm	90700	0	grey	10
Injection-adapter (Ø 15) for drill-Ø 35 mm	90701	7	brown	10

Extension tube Ø 15 (1,9 m)

Drill guide

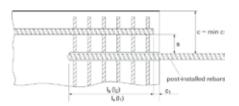
01489 0

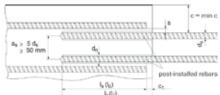
Extension tube

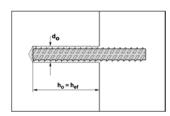
Туре	ArtNo.	ID	qty. per box
			pcs.
Drill guide 3 parts	90819	9	1
Extension tube Ø 9 (1 m)	00472	3	10

			max scabbeling tool hen the connection surface
Туре	ArtNo.	ID	dimensio

Туре	ArtNo.	ID	dimensions		qty. per box
			[mm]		pcs.
Scabbeling tool	01253	7	45 x 240	SDS-Plus Adapter	1


LOADS


Permissible tension force of rebar and required anchorage lengths or lap lengths in accordance with German approval for ultimate strength of steel rebar BSt 500 S. According to Eurocode 2.


Anchor type						Injection m	Injection mortar FIS V						
Reinforcement bar-∅ d _s			[mm]	8	10	12	14	16	20	25	28		
Max. permissible tension force of bar ¹⁾			[kN]	16.2	25.3	36.4	49.6	64.8	101.2	158.1	198.3		
Anchorage length 2) 3)		I _v (I _b)	[mm]	378	473	567	662	756	945	1182	1323		
Overlapping length 2)	I _S ⁴⁾	Is	[mm]	529	662	794	926	1059	1323 ⁶⁾	1654 ⁶⁾	1853 ⁶⁾		
	I _S ⁵⁾	Is	[mm]	756	945	1134	1323	1512 ⁶⁾	_	-	_		
	C12/15	Ψс	[-]		1.30								
5 . (C16/20	Ψc	[-]		1.17								
Factor for concrete strength class 7)	C20/25	Ψc	[-]				1.1	00					
rig22	C25/30	Ψc	[-]				0.	87					
	C30/37	Ψс	[-]				0.	70					

¹⁾ Max.
$$F_S = \frac{\pi \times d_S^2 \times f_{uk, S}}{4 \times m \times G}$$
 with $f_{uk, S} = 500 \text{ N/mm}^2$, $m = 1.15 \text{ und } G = 1.35$

$$^{3)} \text{ Anchorage length } I_{V} = -\frac{A_{S} \text{ req.}}{A_{S} \text{ prov}} \times I_{D} \text{ with } I_{D} = \alpha_{D} \times d_{S} \text{ and } \alpha_{D} = \frac{1}{4} \times -\frac{f_{uk, s} \text{ / m}}{f_{Dd}} = -\frac{1}{4} \times -\frac{500 \text{ / } 1.15}{2.3} = 47.3$$

²⁾ The anchorage and lap lengths apply for good bond conditions. For poor bond conditions, the anchorage lengths should be multiplied by the factor 1.43

 $^{^{4)}}$ Lap length I $_S$ = $\alpha_1 \times I_b$ with α_1 = 1.4 for axial spacing < 10 × d $_S$ or edge distance < 5 × d $_S$.

⁵⁾ Lap length $I_S = \alpha_1 \times I_h$ with $\alpha_1 = 2.0$ for axial spacing $< 10 \times d_S$ and edge distance $< 5 \times d_S$.

 $^{^{\}rm 6)}$ No anchoring possible in poor bond conditions.

 $^{^{71}}$ For concrete strength classes C12/15, C16/20, C25/30 and C30/37 the anchorage and lap lengths should be multiplied by the factor $\psi_{\mathbb{C}}$. Max. anchorage and lap lengths for $d_{S} \le 20$ = 1800 mm and $d_{S} > 20$ = 2000 mm.

Remedial wall tie VBS 8

Professional façade repairs in two-leaf cavity walls.

OVERVIEW

Perforated plastic sleeve

A4 stainless steel profiled tie

Injection adapter

Suitability

For subsequent fixing of:

 Facing masonry with or without an air gap

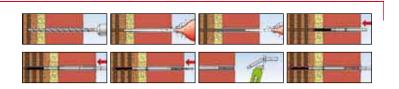
DESCRIPTION

- Allows invisible ties to be retrofitted between two leafs of a cavity wall, as per DIN 1053-1.
- The anchor consists of a perforated plastic sleeve and an A4 stainless-steel profiled tie.
- FIS V injection mortar is used for anchoring.
- The anchor is inserted in the bed joint of the outer leaf.

Advantages/benefits

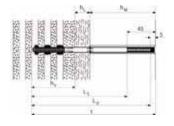
- Suitable for bridging air gaps and insulation layers up to 150 mm
- Bonded positive fit of the mortar ensures reliable anchoring in all substrates.
- Expansion-free anchorage enables use in old and fragile masonry.

- Installation permitted anywhere along the entire bed joint for maximum on-site flexibility.
- Small 8 mm drill ensures anchor points are not visible afterwards.
- Minimum mortar requirement per anchor point for economical anchorages.

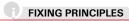

INSTALLATION

Type of installation

Push-through installation


Installation tip

Please contact our technical service department for installation advice.



TECHNICAL DATA

(10000000000000000000000000000000000000		Perforat	ed pl	astic sle	eve	***************************************	A4 stainless steel profiled t					tie
		Injection adapter										
Туре		ArtNo.	ID	approval	air layer resp. insulation	drill-Ø	outer leaf	drill depth = mounting depth	length of profiled tie	anchorage depth	fixing length	qty. per box
				DIBt		d_0				h _{ef}	1	
					[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	pcs.
VBS 8/20	1)	78763	2	•	0 - 20	8	>90	195	188	>60	150	100
VBS 8/50	1)	78799	1	•	20 - 50	8	>90	225	218	>60	180	100
VBS 8/80	1)	78800	4	•	50 - 80	8	>90	255	248	>60	210	100
VBS 8/120	1)	78801	1	•	80 - 120	8	>90	295	288	>60	250	100
VBS 8/150	1)	78802	8	•	120 - 150	8	>90	325	318	>60	280	100
VBS 8 Cleaning set		90241	7		content: cleaning brush and extension tube for blow-out pump							1
Compressed-air cleaning gun		93286	5		for professionell cleaning of the drill hole							1

1) Product including perforated plastic sleeve, A4 stainless steel profiled tie and injection adapter.

Notes

