

Pumps and Automation 2009

Type series index p. 3
Product portfolio p. 6-7
Overview of applications p. 8-15

Our high standard: Creating intelligent solutions

We have supplied generations of customers worldwide with pumps, valves, automation products and services. A company with that kind of experience knows that success never stands still. It flows. And the process that makes that possible is a running partnership between developer and user, between production and practice.

Partners move more together. We do everything possible to ensure that our customers always have access to the ideal product and system solutions. KSB is a loyal partner. And a strong one:

- Over 130 years' experience
- Present in more than 100 countries
- More than 14,000 employees
- More than 100 service centres worldwide
- Approximately 1,900 service specialists

Type series index

for pumps and automation

34 35 35 51 32 31 31 36 36 36 35 31 33 35 34 34 34 34 34 34 34 31 31 31 31 31 31 31 31 31 31 31 31 31	HGB / HGC / HGD HGM HGM-RO HHD HK (Nikkiso-KSB) HN/BN/TN (Nikkiso-KSB) HPH HPK HPK-L HT/BT/TT (Nikkiso-KSB) HY (Nikkiso-KSB)	41 41 48 46 25 25 21 21 21 22 22 29 29 49 50 29 30 30 30 30 30 27 29 49 49 49	PSR Pump Pump RDLC RER RHD RHM RHR Rio C Rio-E Riotr Riotr Rotex RPH RPH-I RSR RVM S 100 SalTe SalTe
23 23 26	hyatronic spc 	28	Secod Secod Sewa
25	KWP / KWP-Bloc	36	SEZ / SNW
27 19 19 22 19 20 20 20 18	LCC-M LCC-R LCV Level Control LHD LSA-S LSR LUV / LUVA / LUVB LUV nuklear	45 45 46 50 47 45 46 42 44	TBC Trialin Trialin UPA UPA UPA UPA UPZ,
18 18 18 22 19 19 20 21 37 37 24 33 33	Magnochem Magnochem-Bloc Mega MDX MHD Microchem mini-Compacta MK / MKY Movitec PumpDrive Movitec VE Movitec V / LHS / VS / VC Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec Multitec-RO	24 24 46 47 26 32 32 39 28 39 27 27 27 28 39 39	Vitaci VN (N WBC WKT YNK
	35 35 31 31 31 33 36 36 35 31 33 35 34 34 33 35 31 41 41 32 51 23 23 23 26 25 27 19 19 20 20 20 20 18 18 18 18 18 18 18 18 18 18	35 HGM 35 HGM-RO 51 HHD 32 HK (Nikkiso-KSB) 31 HN/BN/TN (Nikkiso-KSB) 31 HPH 31 HPK 36 HPK-L 36 HT/BT/TT (Nikkiso-KSB) 31 HY (Nikkiso-KSB) 31 HY (Nikkiso-KSB) 31 HY (Nikkiso-KSB) 31 HY (Nikkiso-KSB) 32 HYa-Eco K 33 Hya-Eco VP 34 Hyamaster ISB 34 Hyamaster SPS 34 Hyamast IK, IV, IVP Hyamat K 33 Hyamat V Hyamat VP 51 Hya-Rain / Hya-Rain-N 41 Hya-Solo E / D / DV 41 hyatronic S 51 hyatronic S 51 hyatronic SP 23 hyatronic spc 23 hyatronic spc 23 LXO 25 KWP / KWP-Bloc 27 LCC-M 19 LCC-R 19 LCV 22 Level Control 19 LHD 20 LSA-S 20 LSR 20 LUV / LUVA / LUVB 18 LUV nuklear 18 18 Magnochem 19 MDX 19 MHD 20 Microchem 21 mini-Compacta 37 MK / MKY 37 Movitec PumpDrive 24 Movitec VE 33 Movite V / LHS / VS / VC 33 Multi Eco-Pro 46 Multi Eco-Top 46 Multitec PumpDrive	35 HGM 41 35 HGM-RO 48 51 HHD 46 32 HK (Nikkiso-KSB) 25 31 HN/BN/TN (Nikkiso-KSB) 25 31 HPH 21 31 HPK 21 36 HPK-L 21 36 HT/BT/TT (Nikkiso-KSB) 25 35 HX (Nikkiso-KSB) 22 31 HY (Nikkiso-KSB) 22 31 HY (Nikkiso-KSB) 22 33 Hya-Eco VP 29 34 Hya-Eco VP 29 35 Hyamaster ISB 49 34 Hyamaster SPS 50 34 Hya-Eco VP 30 34 Hya-Eco VP 30 35 Hyamat IK, IV, IVP 30 36 Hyamat IK, IV, IVP 30 37 Hyamat V 30 38 Hyamat V 30 39 Hyamat V 30 30 Hyamat V 30 31 Hya-Rain / Hya-Rain-N 27 32 Hyatronic S 49 33 hyatronic S 49 34 hyatronic S 49 35 Hyamat V 30 36 Hyamat V 30 37 Hya-Rain / Hya-Rain-N 27 41 Hya-Solo E / D / DV 29 41 hyatronic S 49 42 hyatronic S 49 43 hyatronic SP 49 43 hyatronic SP 49 45 LCC-M 45 46 LCC-R 45 47 LCC-R 45 48 Hyamat V 47 49 LCC-R 46 49 LUV / LUVA / LUVB 42 40 LUV / LUVA / LUVB 42 41 LUV nuklear 44 41 42 Magnochem 24 43 Magnochem 24 44 Magnochem 26 45 Magnochem 26 46 Magnochem 26 47 Microchem 26 48 Magnochem 26 49 Microchem 26 21 mini-Compacta 32 37 MK / MKY 32 37 Movitec PumpDrive 39 38 Multi Eco-Pro 27 49 Multi Eco-Pro 27 40 Microchem 26 41 Milti Eco-Pro 27 42 Multi Eco-Pro 27 44 Movitiec PumpDrive 39 45 Multitec 39 46 Multitec 39 47 Multitec PumpDrive 39

Omega	40
PSR	44
PumpDrive	50
PumpExpert	51
RDLO RER RHD RHM RHR / RVR Rio C Rio-Eco / Rio-Eco Z Rio / Rio Z Riotherm Riotherm C Riotronic ECO Riotronic S ROTE RPH RPH-RO RSR RVM	40 43 42 44 44 16 17 16 16 17 17 31 26 48 43 44
5 100D / UPA 100C SalTec® System SalTec® DT Secochem Ex Secochem Ex K Sewatec / Sewabloc SEZ / PHZ / PNZ SNW / PNW	37 48 48 24 24 36 42 43 43
rBC	45
Frialine	17
Frialine Z	18
JPA 150C	37
JPA 200, 200B, 250C	38
JPA 300, 350	38
JPA Control	50
JPZ, BSX-BSF	38
/itachrom	40
/N (Nikkiso-KSB)	25
NBC	45
NKT / WKTA / WKTB	42
YNK / KRHA	41

Our services: Dependability at your call

We tailor our services to enable new ways of individually optimizing our products. They underscore our farreaching sense of customer responsibility. That commitment starts before any orders — for example with sound advice on financing options. And it goes far beyond product arrival. A dependable partnership with KSB lasts for years. Our services to customers include:

- Remote diagnosis
- Revamping
- TPM® (Total Pump Management)
- System engineering
- Advice on life cycle costs
- Financing options
- Teleservice
- Savings potential analysis

Ready where you are. KSB runs more than 100 service centres around the world. Some 1,900 highly trained KSB specialists are on call to inspect and maintain your equipment. So you can plan for a future free of unwanted surprises. And we also provide individual on-site training sessions. They ensure that operators can use KSB products and systems efficiently and profitably, day in, day out.

Which is how we secure the long-term value of our customers' facilities.

Our vision: Moving more, together

Yesterday: Movement with a mission.

When KSB started business in 1871, our pumps got things moving almost overnight. From the word go, the company was an enthusiastic pioneer. The motor of that dynamism was the sense of contributing to new movement in modern industry.

That is all history now. But KSB still stays true to its tradition, and continues to pioneer remarkable technical skills.

Today: Impetus from innovations.

KSB has spent its long history providing technical innovations that help customers and partners work more successfully than ever.

We gear everything we do to the real demands of everyday operations. Products, systems, life cycle costs and our steadily growing range of services all put customers and their processes first. This relies on our special concentration of activities – from development to sales and marketing.

Tomorrow: Perspectives for partnerships.

Lively dialogue with customers has been a KSB speciality for over 130 years.

Mutual respect remains its hallmark.

Our aim is to strengthen this working partnership still further. The benefits are mutual, too: we profit from practical experience that complements our years of development know-how. And so our customers profit from innovative products, systems and services that match their demands with precision and performance.

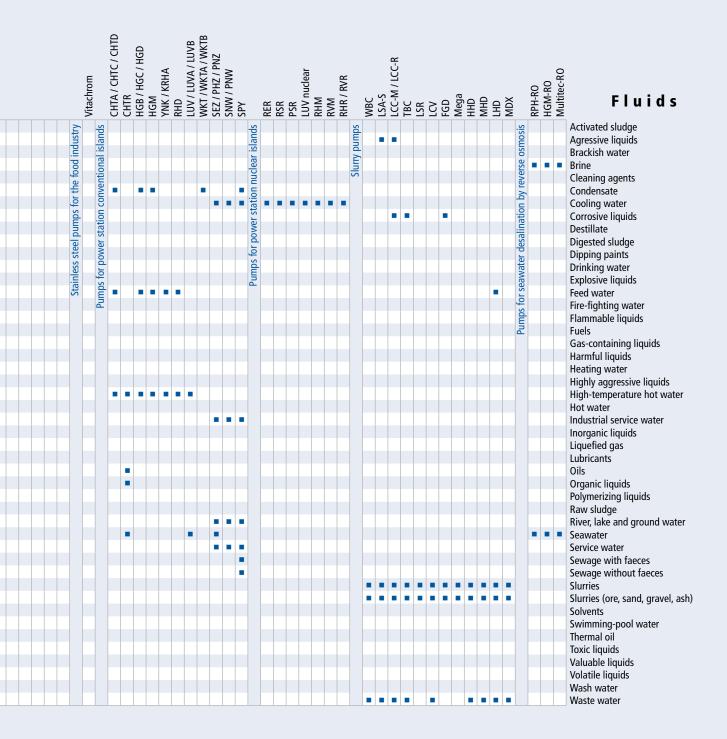
Partnership is a value whose products keep their value. So moving more together makes doubly good sense. We look forward to teaming up.

Type / Application	Type Series	Page	A		Seg	mer	it
Circular numas / hat water comics numas	D: (D: 7	1.5					
Circular pumps / hot water service pumps,	Rio / Rio Z	16	-				
fixed speed	Rio C	16					
	Riotherm C	16					
Circular pumps, variable speed	Riotherm	16					-
Circular pullips, variable speed	Rio-Eco / Rio-Eco Z	17 17					
In line numne	Riotronic S / Riotronic ECO		-				-
In-line pumps with fixed/variable speed drive	Trialine / Trialine Z	17, 18	-				
with fixed/variable speed drive	Etaline / Etaline Z	18	-				
	Etaline PumpDrive	18					
6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Etaline Z PumpDrive	18	-	_			-
Standardized / close-coupled pumps,	Etanorm / Etanorm R	19	-				
fixed/variable speed	Etanorm PumpDrive	19	-				
	Etabloc / Etabloc PumpDrive	19	-				
	Etachrom BC / Etachrom BC PumpDrive	19, 20	•				
	Etachrom NC / Etachrom NC PumpDrive	20	•				
11	Etanorm GPV / CPV	20	•	•		_	
Hot water pumps	HPK-L / HPK / HPH	21	•				
Hot water / thermal oil pumps	Etanorm SYA / RSY	21	-				
	Etabloc SY / Etaline SY	22	•				
Thermal oil pumps with magnetic drive /	Etamagno SY / SYI / Bloc SY	22	•				
canned motor	HX (Nikkiso-KSB) / HY (Nikkiso-KSB)	22					
Standardized chemical pumps	CPKN / CPKN PumpDrive	23	•	•			
	CPK-D	23					
Seal-less pumps	Magnochem	24					
	Magnochem-Bloc	24	•				
	Etaseco / Etaseco-l	24					
	Secochem Ex / Secochem Ex K	24					
	HN / BN / TN (Nikkiso-KSB)	25					
	HT / BT / TT (Nikkiso-KSB)	25					
	HK (Nikkiso-KSB)	25					
	VN (Nikkiso-KSB	25					
	DN (Nikkiso-KSB)	25				_	
Process pumps	RPH	26					
1 locess pumps	CTN	26				_	
Micro-process engineering	Microchem	26	-				
Rainwater harvesting systems	Hya-Rain / Hya-Rain N	27					
Railiwater Harvesting systems	Eco-Rain	27					
5 2 1 1 1 11	Multi Eco / Multi Eco-Pro	27					
Domestic water supply systems with		28	-				
automatic control unit / swimming pools	Multi Eco-Top						
	Movitec VE	28					
	Ixo	28	-				
D	Filtra	28					-
Pressure boosting units	Hya-Solo E / D / DV	29					•
	Hya-Eco K / Hya-Eco VP	29					
	Hyamat K / Hyamat V / Hyamat VP	30					
D .	Hyamat IK, IV, IVP	30		•			
Drainage pumps / waste water pumps	Ama-Drainer 301, 303, 324, 356	31	•				
	Ama-Drainer 400/10, 400/35, 500/10/11	31	•				
	Ama-Drainer 80, 100	31	•				•
	Ama-Porter F / S / ICS	31					
	Rotex	31	•				
	MK / MKY	32					
Lifting units/collection tanks	Ama-Drainer-Box	32	•				
	mini-Compacta	32	•				
	Compacta	32					
	Ama-Porter CK Pumping Station	33	•				
	Amarex N CK Pumping Station	33	•				
	Evamatic-Box / Evamatic-Box ICS	33					
Submersible motor pumps	Amarex N	34	•				
, ,	Amarex KRT	34					
	Amarex KRT dry installed	34					
Submersible pumps in discharge tubes	Amacan K	34					
	Amacan P / Amacan S	35					
Mixers / agitators / tank cleaning units	Amamix	35	_				
	Amaprop	35					
	Amajet	36					
	Amajet Amaline	36					
Pumps for solids-laden fluids	Sewatec / Sewabloc						
runius iui sulius-laueli liulus	>ewatec / Sewapioc	36			• •		
	KWP / KWP-Bloc	36					

A Automation possible

Type / Application	Type Series	Page	A		S	egr	nen	t	
Self-priming pumps	Etaprime L	37							H
sen prinning pumps	Etaprime B / BN	37							
Submersible borehole pumps	S 100D / UPA 100C	37							+
Submersible borefiole partips	UPA 150C	37							
	UPA 200, 200B, 250C	38							t
	UPA 300, 350	38							H
	UPZ, BSX-BSF	38	-			_			H
ligh-pressure pumps, fixed / variable speed	Movitec V / LHS / VS / VC	39							۰
ngir pressure pumps, incu , rumusie specu	Movitec PumpDrive	39							H
	Multitec / Multitec PumpDrive	39							t
axially split pumps	Omega	40							t
unany spire pamps	RDLO	40							t
tainless steel pumps for the food industry	Vitachrom	40		_	_		-		t
umps for power station conventional	CHTA / CHTC / CHTD	41	_						٠
slands	CHTR	41							
	HGB / HGC / HGD	41							Т
	HGM	41							
	YNK / KRHA	41				_			H
	RHD	42							t
	LUV / LUVA / LUVB	42							۲
	WKT / WKTA / WKTB	42							t
	SEZ / PHZ / PNZ	42							t
	SNW / PNW	43							t
	SPY	43							H
rumsp for power station nuclear islands	RER	43		_					+
anisp for power station nuclear islands	RSR	43							H
	PSR	44							t
	LUV nuklear	44							t
	RHM	44							H
	RVM	44							H
	RHR / RVR	44							H
lurry pumps	WBC	45					_		٠
iany pamps	LSA-S	45							H
	LCC-M	45							H
	LCC-IVI	45							H
-	TBC	45							H
	LSR	46							H
	LCV	46							Н
	FGD	46							H
	Mega	46				-	-		H
-	HHD	46							+
-	MHD	46							Н
	LHD	47							H
-	MDX	47							+
Pumps and pressure exchangers for		47							+
eawater desalination by reverse osmosis	SalTec® System SalTec® DT	48							H
eawater desamation by reverse osmosis	RPH-RO								H
		48							
	HGM-RO Multitec-RO	48 48							H

Automation		Page	Segn	nent
Control systems	hyatronic K / N	49		•
	hyatronic S	49		
	hyatronic SP	49		
	hyatronic mb	49		
	Hyamaster ISB	49		
	Hyamaster SPS	50		
	hyatronic spc	50		
	PumpDrive	50		
	UPA Control	50		
	LevelControl	50		
	Controlmatic E.2	51		
	Cervomatic EDP	51		
Monitoring and diagnostic systems	Amacontrol	51		
	PumpExpert	51		


A Automation possible

S Q E B B B B B B B B B B B B B B B B B B		Rio / Rio Z	Rio C	Riotherm C	Ricotherm		F - 7 - 10 - 10	RIO-ECO / RIO-ECO Z Riotropic S / Riotropic FCO		Trialine	Trialine Z	Etaline	Etaline Z	Etaline PumpDrive	Etaline Z PumpDrive		Etanorm / Etanorm R	Etanorm PumpDrive	Etabloc	Etabloc PumpDrive	Etachrom BC / Etachrom BC PumpDrive	Etachrom NC / Etachrom NC PumpDrive	Etanorm GPV / CPV		HPK-L	нРН	HPK		Etanorm SYA / RSY	Etabloc SY / Etaline SY		Etamagno SY / SYI / Bloc SY	HX (Nikkiso-KSB)	HY (Nikkiso-KSB)		CPKN / CPKN PumpDrive	CPK-D				
Activated sludge Agressive liquids	peed					pood	naad		drive							peed								sdur				dized							sdur						
Brackish water Brine	fixed s					oldei	מחום		peeds							iable s	i	Ħ	Ħ					Hot water pumps				andar			n peur				ical pu						
Cleaning agents Condensate	service pumps, fixed speed					boog oldersey samina sotelingi	Ds, val		riable							d / var								Hotw				nps, st	•	•	/e / cal				Standardized chemical pumps	•					
Cooling water Corrosive liquids	vice p	•	•	-	•				ed / va	٠	•	•	•	•	•	s, fixe			•		•	•			•	•	•	oil pur			tic driv				ardize	•					
Destillate Digested sludge	ater se					reli pto	Calac		vith fix							mnd p									•		•	nermal			magne			•	Stand						
Dipping paints Drinking water	/ hot water				ŀ	•	5		n-line pumps with fixed / variable speed drive	-						couple				•			•					Hot water / thermal oil pumps, standardized			s with						•				
Explosive liquids Feed water									-line pu							close-												Hot wa			dund		•	•		•					
Fire-fighting water Flammable liquids	Circulator pumps								<u>=</u>							dized /		•													Thermal oil pumps with magnetic drive / canned motor		•								
Fuels Gas-containing liquids	Circu															Standardized / close-coupled pumps, fixed / variable speed															Ther										
Harmful liquids Heating water Highly aggressive liquids		٠	٠				ŀ	۰		٠	٠	•	•	•	٠	S	•	•	•	•													i	ì		i					
High-temperature hot water Hot water		i			l.		ı,			L		:	÷				i	i	Ē	:	ē				•								Ē	Ē							
Industrial service water Inorganic liquids		Ē	ľ	ŀ			ľ	ľ		Ē	Ē	Ē	Ē	Ē	٠		Ē	Ē	Ē	•	Ē	Ē	•				-							i		i					
Liquefied gas Lubricants					I		ŀ																																	l	
Oils Organic liquids					I												•	•	•	•	•	•			ā		i		•	•			i	i		i				l	
Polymerizing liquids Raw sludge																																	•	•		•					
River, lake and ground water Seawater																	•		i																	•					
Service water Sewage with faeces				•	i					ŀ	•	•	•	•	•					•		•														•					
Sewage without faeces Slurries																																		i							
urries (ore, sand, gravel, ash) Solvents																																	•	•		•					
Swimming-pool water Thermal oil																									•		•		•	•		•	-	•							
Toxic liquids Valuable liquids																																	ė	i		i					
Volatile liquids Wash water																							•											•		•					
Waste water																																					Ш		 		+

		Magnochem	Magnochem-Bloc	Etaseco / Etaseco-l	Secochem Ex	Secochem Ex K	HN / BN / TN (Nikkiso-KSB)	HT / BT / TT (Nikkiso-KSB)	HK (Nikkiso-KSB)	VN (Nikkiso-KSB)	DN (Nikkiso-KSB)		RPH	CTN		Microchem	M aic G cyll / aic G cyll	riya-Naili / riya-Naili IN Fro-Rain	בכם יימויי	N4 +; E/O	Multi Eco	Multi Eco-Pro	Multi Eco-Top	Movitec VE	lxo ox	Filtra		Hya-Solo E / D / DV	Hya-Eco K / Hya-Eco VP	Hyamat K	Hyamat V	Hyamat VP	Hyamat IK, IV, IVP	•	Ama-Drainer 301, 303, 324, 3	Ama-Drainer 400/10 400/35 5	Ama-Drainer 80, 100	Ama-Porter F / S / ICS	Kotex	Fluids
	mps														ering		S		ools	3							JUITS							Drainage pumps / waste water pumps						Activated sludge Agressive liquids
	Seal-less pumps											Process pumps			Micro-process engineering		Rainwater narvesting systems		Domestic water supply systems with automatic control unit / swimming pools	מ							Pressure boosting units							er pu						Brackish water
	aal-le	à	i	Ė	i	i	Ė	•	ä	i	ä	Proce			ss en		1 C		vimm		ł						0000							e wat						Brine Cleaning agents
	Š														roce		191		+ / SV		I	I					sure							wast					1	Condensate
		Н	H	۲	Н	H	H				H				Crop	-	ale		E.	,			T	1			Pres						•	bs /\						Cooling water Corrosive liquids
		ī													Ξ				ontro															mnd						Destillate
		П														-			tic c	,														age						Digested sludge Dipping paints
		٠	٠	٠	•	٠	•	٠	•	٠	•								oma	•		4		•				•	•	•	•	•	•	Drair						Drinking water
		П				P		•	П										h aut	5	+																			Explosive liquids Feed water
																			wit					•																Fire-fighting water
		H	H	٠	i	i	H	۰	H	i	i		ä						tem																					Flammable liquids Fuels
		Ī	Ī			Ī				_									V SVS	()																				Gas-containing liquids
		•		Ē												•			dan	<u></u>	+																			Harmful liquids Heating water
								ī											ater 9																					Highly aggressive liquids
		•	•		•	•		•											M		I	I		_																High-temperature hot water
		П	•			-	Н	•											nesti																				١,	Hot water Industrial service water
								ī		•						•			Don	i																				Inorganic liquids
										•										L																				Liquefied gas Lubricants
				٠		•					•		Ħ							Г	Т	Т		T															ı	Oils
										•	•					•				ŀ																				Organic liquids
							Н													L																				Polymerizing liquids Raw sludge
																				Г				I											•	•	•	•	ı	River, lake and ground water
																	ı.			ŀ												ı								Seawater Service water
				i									i				ľ			ŀ									1		•		i						ľ	Sewage with faeces
		•		•	•	٠		•	•	٠	•									L		1													•	•	•	•		Sewage without faeces
																				r																				Slurries Slurries (ore, sand, gravel, ash)
		ī						ı								•				r																				Solvents
		п						ı												L					1	1														Swimming-pool water Thermal oil
		Ė		•	B	i	•	i		•	•		•																											Toxic liquids
										•						•																								Valuable liquids
		٠	•	•	•	•		٠		•	•					•				b																				Volatile liquids Wash water
																						1		1											•	•	•	•	d	Waste water

S
2
Ξ
3

Compacta
Ama-Porter CK Pumping Station
Amarex N CK Pumping Station
Evamatic-Box / Evamatic-Box ICS Movitec V / LHS / VS / VC Movitec PumpDrive Multitec / Multitec PumpDrive Amarex KRT
Amarex KRT
Amarex KRT dry installed UPA 150C UPA 200, 200B, 250C UPA 300, 350 UPZ, BSX-BSF Sewatec / Sewabloc S 100D / UPA 100C Ama-Drainer-Box Etaprime L Etaprime B / BN KWP / KWP-Bloc mini-Compacta Amacan K Amacan P Amacan S Amaprop Amajet Amaline Amamix Omega RDLO Fluids Activated sludge Submersible pumps in discharge tubes Mixers / agitators / tank cleaning units Pumps for solids-laden fluids -priming pumps Submersible borehole pumps Submersible motor pumps High-pressure pumps, fixed / variable speed Axially split pumps Agressive liquids Brackish water Brine ī Cleaning agents Condensate Self-Cooling water orrosive liquids Corrosive liquids Destillate ted sludge Digested sludge П Dipping paints . . Drinking water Explosive liquids Feed water Fire-fighting water Flammable liquids Fuels Gas-containing liquids Harmful liquids Heating water Highly aggressive liquids - -High-temperature hot water Hot water Industrial service water Inorganic liquids Liquefied gas Lubricants Organic liquids Polymerizing liquids Raw sludge River, lake and ground water i Seawater Service water Sewage with faeces Sewage without faeces Slurries Slurries (ore, sand, gravel, ash) Solvents Swimming-pool water Thermal oil Toxic liquids Valuable liquids Volatile liquids Wash water Waste water

	L
	\$
	8
	_

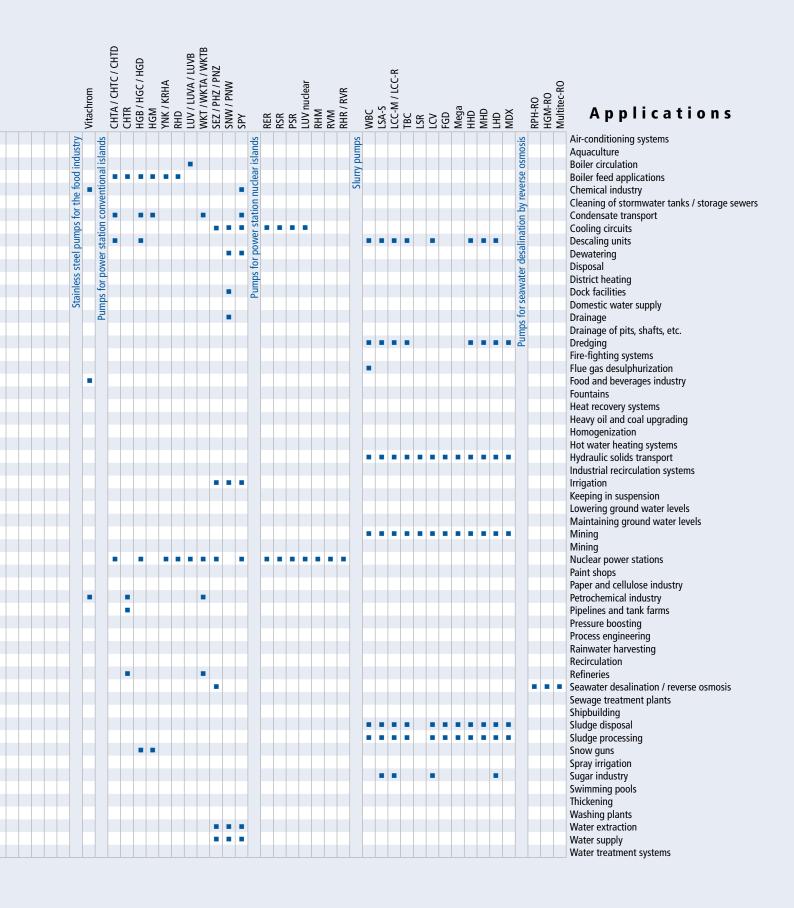
Applications

Air-conditioning system Aquacultur Boiler circulatio Boiler feed applications Chemical industr Cleaning of stormwater tanks / storage sewer Condensate transpor Cooling circuit Descaling unit Dewaterin Disposa District heatin Dock facilitie Domestic water supply Drainage of pits, shafts, etc Dredgin Fire-fighting system Flue gas desulphurization Food and beverages industr Fountain Heat recovery system Heavy oil and coal upgradin Homogenization Hot water heating system Hydraulic solids transpor Industrial recirculation system Irrigatio Keeping in suspensio Lowering ground water level Maintaining ground water level Minin Nuclear power station Paint shop Paper and cellulose industr Petrochemical industr Pipelines and tank farm Pressure boostin Process engineerin Rainwater harvesting Recirculatio Refinerie Seawater desalination / reverse osmosi Sewage treatment plant Shipbuildin Sludge disposa Sludge processin Snow gun Spray irrigatio Sugar industr Swimming pool

s d E n L t i o n s		Rio / Rio Z	Rio C	Riotherm C	Ricotherm		Rio-Eco / Rio-Eco Z	Riotronic S / Riotronic ECO		Trialine	Trialine Z	Etaline	Etaline Z	Etaline PumpDrive	Etaline Z PumpDrive	Ftanorm / Ftanorm R	Etanorm PumpDrive	Etabloc	Etabloc PumpDrive	Etachrom BC / Etachrom BC PumpDrive	Etachrom NC / Etachrom NC PumpDrive	Etanorm GPV / CPV		HPK-L	НРН	HPK		Etanorm SYA / RSY	Etabloc SY / Etaline SY		tamagno SY / SYI / Bloc SY	HX (Nikkiso-KSB)	Y (Nikkiso-KSB)		CPKN / CPKN PumpDrive	CPK-D .	
		æ	<u>=</u>	<u>=</u>			. <u>₹</u>	_	_	ï <u>E</u>	F	<u>ш</u>	<u>.</u>			_	_	i ti	Ē	Ē	F.		S	主	主			표	_	_	#3 : ■	Ì ≦	E	_	Ċ	J	
Aquaculture	speed					speer			driv		-		-		-	2000							dun				dize			moto				dun			
Boiler circulation feed applications	ixed					able:			peed						9	a Diagram							Hot water pumps	Ħ	7	ī	andai			ned			- 1	E D			
Chemical industry	ıps, f					vari			ple s						1,077								ot wa	_	_	_	s, sta			/ can	•			nem	•		
s / storage sewers densate transport	bum.					ımps,			varia						7000								ĭ				dunc			Jrive			-	zed c			
Cooling circuits	rvice	•	•	•	•	Circulator pumps, variable speed	•		/ pax	•	•	•	•	•	■ 2	100	ŀ	Ē	•	_	_			Ē		Ē	lo l			etic (1	Standardized chemical pumps			
Descaling units Dewatering	er se					culat			th Ex						2	2											erma			nagu			1,047	Stand			
Disposal	t wat					ij			os wi						0	000											/the		-	/ITN n							
District heating Dock facilities	Circulator pumps / hot water service pumps, fixed speed								In-line pumps with fixed / variable speed drive			•	•	•	Ctandardized / closed-country fixed / variable cooper		•							•		•	Hot water / thermal oil pumps, standardized			inermai oii pumps with magnetic drive / canned motor			1				
estic water supply	sdwr								line						200												Hot v			ball and		Ι					
Drainage of pits, shafts, etc.	tor pu								≐						1001	7 007														O							
Dredging	culat														2															erm							
e-fighting systems desulphurization	Ü														1	-		•											F								
everages industry												٠	•	٠	•	•		•	•	•	Ē	•						٠	•						•		
Fountains recovery systems																																					
nd coal upgrading										_																									•		
Homogenization r heating systems																					П																
ic solids transport											-																										
irculation systems Irrigation		•		П						9		•	•	•	•			F	Н	H	Ħ	ı		9		•		•	•			T	1				
ing in suspension																																					
ound water levels ound water levels																																					
Mining																																					
Mining ar power stations																																					
Paint shops																																					
cellulose industry																																	d		i		
es and tank farms																																			•		
Pressure boosting ocess engineering																																					
nwater harvesting																																					
Recirculation Refineries																																	1				
/ reverse osmosis																ŀ	•	٠	٠																•		
treatment plants Shipbuilding																						•															
Sludge disposal																																					
Sludge processing Snow guns																																					
Spray irrigation																ŀ	•	•	•	•	ī																
Sugar industry Swimming pools																ŀ																			-		
Thickening																																					
Washing plants Water extraction																ŀ																					
Water supply				•	٠					•	•	•	•	٠	•	ŀ			•	•	ı	•															
reatment systems																																					

Water treatment system

		Magnochem	Magnochem-Bloc	Etaseco / Etaseco-l	Secochem Ex	Secochem Ex K	HN / BN / TN (Nikkiso-KSB)	HI / BI / II (NIKKISO-KSB)	HK (NIKKISO-KSB)	VN (NIKKISO-K3B) DN (NIKKISO-K3B)		RPH	CTN		Microcnem	Hya-Rain / Hya-Rain N	Eco-Rain	() 	Multi Eco-Pro	Multi Eco-Top	Movitec VE	lxo	Filtra	Hva-Solo E / D / DV	Hya-Eco K / Hya-Eco VP	Hyamat K	Hyamat V	Hyamat VP	Hyamat IK, IV, IVP	Ama-Drainer 301 303 324 356	Ama-Drainer 400/10 400/35 500/10/11	Ama-Drainer 80, 100	Ama-Porter F / S / ICS	Rotex	MK / MKY	Applications
	sdwn			•		-	1							ering	tems		2000	_					Inite						J. Carrie	5						Air-conditioning systems Aquaculture
	Seal-less pumps										Process pumps		-	Micro-process engineering	Rainwater harvesting systems		Domastic water cumby exctame with automatic control unit / ewimming mode	n n					Pressure hoosting units	ח					10,10	Maste water pumps					E	Boiler circulation Boiler feed applications
	Seal-l	•	•	•			þ	T	t		Proc		•	ess e	vestir		, wint						900						10,10	וב אס					(Chemical industry
			•	•			d	t						-proc	er har		, +i.d	" =					PCCIII						70/4/	/ Wds					• (Eleaning of stormwater tanks / storage sewers Condensate transport
			•	•			1							Micro	nwate		-	5			•		۵						200	<u>S</u>						Cooling circuits Descaling units
															Rai		5												2	nd ⇒	٠	٠	ı	٠	■ [Dewatering
																	<u>:</u>													<u></u>	r	•	-	١		Disposal District heating
																	÷ .	ant						ı						2						Dock facilities Domestic water supply
																	1	N N		Ī				F			Ī							•	• C	Drainage
																	40	פובווו												•	ľ	•		•		Orainage of pits, shafts, etc. Oredging
																	2	y sy			•														F	Fire-fighting systems Flue gas desulphurization
				•									•				2	dns I															•	٠	F	ood and beverages industry
																	0+0,40	wale													ı					ountains Heat recovery systems
																	.+.	באוור																	H	Heavy oil and coal upgrading
				•	-												200	3																	H	Homogenization Hot water heating systems
							d	÷	i												П															Hydraulic solids transport ndustrial recirculation systems
																•	•	ŀ	•	٠	•	•		٠		•	٠	•	•						l li	rrigation
																																				Keeping in suspension Lowering ground water levels
																																				Maintaining ground water levels Mining
														٠																					l N	Mining
			•				Т	ľ	ľ			•																								Nuclear power stations Paint shops
												Ħ																					Ē		P	Paper and cellulose industry
							Ţ	t					•																							Petrochemical industry Pipelines and tank farms
														١.										•			•									Pressure boosting Process engineering
					1	- '	ľ									•	•	•	•			•		•											F	Rainwater harvesting
			•		•		d	•	d																											Recirculation Refineries
																																			S	Seawater desalination / reverse osmosis
																																			S	Sewage treatment plants Shipbuilding
																																				iludge disposal iludge processing
																								L											S	Snow guns
			•	•		•										i		ľ						ľ											S	Spray irrigation Sugar industry
																							•													Swimming pools Thickening
																		ŀ	•	•	•	•		٠	•	•	•	•	1						V	Washing plants
																		ŀ			•	•		ŀ			•									Nater extraction Nater supply
																		ŀ	•	•		•								•		•		•		Nater treatment systems


S
2
Ε
3
_

Applications

Air-conditioning systems Aquaculture Boiler circulation Boiler feed applications Chemical industry Cleaning of stormwater tanks / storage sewers Condensate transpor Cooling circuits Descaling units Dewatering Disposa District heating Dock facilities Domestic water supply Drainage Drainage of pits, shafts, etc Dredging Fire-fighting systems Flue gas desulphurization Food and beverages industry Fountain: Heat recovery systems Heavy oil and coal upgrading Homogenization Hot water heating systems Hydraulic solids transpor Industrial recirculation systems Irrigation Keeping in suspension Lowering ground water levels Maintaining ground water levels Mining Nuclear power stations Paint shops Paper and cellulose industry Petrochemical industry Pipelines and tank farms Pressure boosting Process engineering Rainwater harvesting Recirculation Refineries Seawater desalination / reverse osmosis Sewage treatment plants Shipbuilding Sludge disposa Sludge processing Snow guns Spray irrigation Sugar industry Swimming pools Thickening

s d E n d		Ama-Drainer-Box	Compacta	Ama-Porter CK Pumping Station	Amarex N CK Pumping Station	Evamatic-Box / Evamatic-Box ICS		Amarex N	Amarex KKI	Amarex KKI dry installed	Amacan K	Amacan P	Amacan S		Amamix	Amaprop	Amajet	Amaline	:	Sewatec / Sewabloc	KWP / KWP-Bloc	- 0	Etaprime L Etaprime B / BN	Etaplille B / Biv	S 100D / UPA 100C	UPA 150C	UPA 200, 200B, 250C	UPA 300, 350	UPZ, BSX-BSF	Movitec V / LHS / VS / VC	Movitec PumpDrive	Multitec / Multitec PumpDrive	-	Omega	RDLO			
ditioning systems	nks									0				nits											3 =				Pad									
Aquaculture Boiler circulation	collecting tanks						Submersible motor pumps				1	•		Mixers / agitators / tank cleaning units					Pumps for solids-laden fluids		2	sdiiing puilles		Cuhmarcible horabole pumpe	2				High-pressure minns fixed / variable speed	2			Axially split pumps					
feed applications	ectin						otol			2	<u> </u>			anii					·lade			5		9					in	•	•	•	split					
Chemical industry	8						le m			• <u>.</u>	disc			k cle					-lids-			=		2	5				167				ially					
s / storage sewers densate transport	its /						ersib	•		• ·				tan/	4		•		or so		400	26		9	2				yay	2			Axi					
Cooling circuits	d un						pme			2		•		ors /					ps fc					io.	<u> </u>				j .									
Descaling units	Lifting units /						S			• 2	<u> </u>			gitat					E I		•			4					1									
Dewatering Disposal	_	١.			н	H			_	- qi		•	•	s / a											,				1	,								
District heating			Т	Ī	Ī			7		- 2				ixer															POCCI						•			П
Dock facilities										Ū	กี			Σ															ا ا	2								
estic water supply Drainage																									ŀ				Ξ									Н
of pits, shafts, etc.																																						
Dredging																																						
e-fighting systems desulphurization																									ľ	•		•		r	•	•			•	4		
everages industry																						ı,																П
Fountains																																						
recovery systems																																						Ц
nd coal upgrading Homogenization																																						
r heating systems																																						
ic solids transport																																•						
rculation systems																									L					E	F	H						
Irrigation ing in suspension								•		1	r	ı	i												r	ı		•		F	ı	ı		•	-			
ound water levels								•																	ı	•		•										
ound water levels									•	•																												
Mining Mining															d										ŀ	•		•										
ar power stations																																						П
Paint shops																					•				•													
cellulose industry								•	•	1											•									H	•	i		H				
chemical industry																																						
Pressure boosting																										•												
ocess engineering																					•																	
nwater harvesting Recirculation												•													•													
Refineries																																						
/ reverse osmosis									•			٠															•	•				٠		•	•			
treatment plants Shipbuilding											•	•			۹						•	1	ľ												H			
Shipbuilding Sludge disposal																																						
Sludge processing								•	•	•										•																		
Snow guns																													1									
Spray irrigation Sugar industry																									H	•				ľ	۰							
Swimming pools																																						
Thickening																																						
Washing plants									_																					H	•	•						
Water extraction Water supply												Н	Ħ																1	ı				Ħ	Ħ			
reatment systems										•	•	•													•	•		•			•							

Water treatment systems

Circulator pumps / hot water service pumps, fixed speed

Rio/Rio Z

Rp / DN 1-1¹/₄ / 32 - 100
Q [m³/h] max. 120
H [m] max. 18
p [bar] max. 10
T [°C] -20 to +130
Data for 50 Hz operation

Circulator pump with manual speed control

Design: Maintenance-free, glandless wet rotor pump, flanged or screw-ended, with three speed levels; in twin pump design (Rio Z) for standby operation with integrated swing check valve or, on option, peak load operation (parallel operation). **Applications:** Hot water heating systems, heat recovery systems and cooling circuits in air-conditioning systems.

A Switchgears

Reference no. 1115.51

Rio C

Rp	1-11/4			
Q [m³/h]	max. 4			
H [m]	max. 5.8			
p [bar]	max. 10			
T [°C]	-10 to +110			
Data for 50 Hz operation				

Circulator pump with manual speed control

Design: Maintenance-free, glandless wet rotor pump, screw-ended, with three speed levels.

Applications: Hot water heating systems, heat recovery systems and cooling circuits in air-conditioning systems.

Reference no. 1120.5

also available in 60 Hz

Hot water service pump

Riotherm C

Rp / DN	1/2-11/4 / 40 - 50			
Q [m³/h]	max. 28			
H [m]	max. 7.5			
p [bar]	max. 10			
T [°C]	-10 to +110			
Data for 50 Hz operation				

Design: Maintenance-free, glandless wet rotor pump, screw-ended, with three

speed levels.

Applications: Hot water supply, heat transfer / recovery systems and cooling

Applications: Hot water supply, heat transfer / recovery systems and cooling circuits in air-conditioning systems.

Reference no. 1109.5

Riotherm

Rp	1-11/4			
Q [m³/h]	max. 10			
H [m]	max. 6			
p [bar]	max. 10			
T [°C]	-2 to +110			
Data for 50 Hz operation				

Design: Screw-ended dry rotor pump with mechanical seal and fixed speed. **Applications:** Hot water supply systems, swimming pools, cooling circuits and industrial plants.

Reference no. 1118.5

also available in 60 Hz

Hot water service pump

Circulator pumps, variable speed

Rio-Eco/Rio-Eco Z

Circulator pump with continuously variable differential pressure control

 Rp / DN
 1-1¹/₄ / 32 - 65

 Q [m³/h]
 max. 108

 H [m]
 max. 13

 p [bar]
 max. 10

 T [°C]
 -10 to +110

 n [min¹]
 max. 4800

Design: Maintenance-free wet rotor pump with integrated frequency inverter for continuously variable differential pressure control and IR interface for remote control.

Applications: Hot water heating systems, heat recovery systems and cooling circuits in air-conditioning systems.

Reference no. 1137.5

also suitable for 60 Hz operation

Riotronic S

Rp 1-1¹/₄
Q [m³/h] max. 3.5
H [m] max. 6
p [bar] max. 10
T [°C] +20 to +110
n [min¹] max. 2680

Circulator pump with continuously variable differential pressure control

Design: Maintenance-free, glandless wet rotor pump, screw-ended, with integrated electronics for continuously variable differential pressure control. **Applications:** Hot water heating systems and heat recovery systems.

Reference no. 1112.5

Riotronic ECO

Rp 1-1¹/₄
Q [m³/h] max. 2.5
H [m] max. 5
p [bar] max. 10
T [°C] +15 to +110
n [min¹] max. 3500

Design: Maintenance-free, glandless wet rotor pump, screw-ended, with EC motor technology and continuously variable differential pressure control.

High-efficiency circulator pump with continuously variable differential pressure control

Applications: Hot water heating systems and heat recovery systems.

Reference no. 1112.51

In-line pumps with fixed / variable speed drive

Trialine

DN 32 - 80
Q [m³/h] max. 90
H [m] max. 16
p [bar] max. 10
T [°C] -15 to +120
Data for 50 Hz operation

Design: Close-coupled in-line pump with common pump / motor shaft. **Applications:** Hot water heating systems, cooling circuits, air-conditioning and water supply systems.

A Hyamaster · hyatronic · Switchgears

Reference no. 1144.51

also available in 60 Hz

In-line pump

In-line pumps with fixed / variable speed drive

Trialine Z

In-line twin pump

DN	32 - 80			
Q [m³/h]	max. 120			
H [m]	max. 16			
p [bar]	max. 10			
T [°C]	-15 to +120			
Data for 50 Hz operation				

Design: Close-coupled in-line pump with common pump / motor shaft; in twin pump design for standby operation with integrated change-over flap or, on option, peak load operation (parallel operation).

Applications: Hot water heating systems, cooling circuits, air-conditioning and water supply systems.

A Hyamaster · hyatronic · Switchgears

Reference no. 1144.52

also available in 60 Hz

In-line pump

Etaline

DN	32 - 200				
Q [m³/h]	max. 700				
H [m]	max. 95				
p [bar]	max. 16				
T [°C]	-30 to +140				
Data for 50 Hz operation					

Design: Close-coupled, in-line circulator pump with volute casing and standardized motor.

Applications: Hot water heating systems, cooling circuits, air-conditioning, water and service water supply systems, industrial recirculation systems.

A Hyamaster · hyatronic · Switchgears

Reference no. 1146.51

also available in 60 Hz

In-line twin pump

Etaline Z

DN	32 - 200			
Q [m³/h]	max. 1120			
H [m]	max. 77			
p [bar]	max. 16			
T [°C]	-30 to +140			
Data for 50 Hz operation				

Design: Close-coupled, in-line twin circulator pump, pump shaft and motor shaft are rigidly coupled.

Applications: Hot water heating systems, cooling circuits, air-conditioning systems, water and service water supply systems, industrial recirculation systems.

A Hyamaster · hyatronic · Switchgears

Reference no. 1148.5

also available in 60 Hz

Etaline PumpDrive

DN	32 - 150
Q [m³/h]	max. 788
H [m]	max. 100
p [bar]	max. 16
T [°C]	-10 to +110
n [min ⁻¹]	max. 4200

In-line pump with motor-mounted variable speed system

Design: Close-coupled in-line circulator pump with motor-mounted variable speed system; pump shaft and motor shaft are rigidly coupled.

Applications: Hot water heating systems, cooling circuits, air-conditioning systems, water and service water supply systems, industrial recirculation systems.

A PumpDrive

Reference no. 1149.52

also suitable for 60 Hz operation

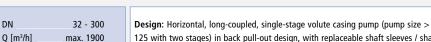
Etaline Z PumpDrive

DN	32 - 125
Q [m³/h]	max. 479
H [m]	max. 76
p [bar]	max. 16
T [°C]	-10 to +110
n [[min ⁻¹]	max. 4200

In-line pump with motor-mounted variable speed system

Design: Close-coupled in-line circulator pump, in twin pump design with motormounted variable speed system; pump shaft and motor shaft are rigidly coupled. Double pump control modules (accessories) enable redundant operation of Etaline Z without a higher-level controller.

Applications: Hot water heating systems, cooling circuits, air-conditioning systems, water and service water supply systems, industrial recirculation systems.


A PumpDrive

Reference no. 1154.51

also suitable for 60 Hz operation

Standardized / close-coupled pumps, fixed / variable speed

Etanorm / Etanorm R

H [m] max. 102
p [bar] max. 16
T [°C] max. +140
Data for 50 Hz operation

Standardized pump

125 with two stages) in back pull-out design, with replaceable shaft sleeves / shaft protecting sleeves and casing wear rings. Design to ATEX. **Applications:** Spray irrigation, irrigation, drainage, district heating, water supply systems, heating and air-conditioning systems.

Applications: Spray irrigation, irrigation, drainage, district heating, water supply systems, heating and air-conditioning systems, condensate transport, swimming pools, fire-fighting systems, handling of hot water, cooling water, fire-fighting water, oil, brine, drinking water, brackish water, service water, etc.

A PumpExpert • PumpDrive • Hyamaster • hyatronic

Reference no. 1211.5

also available in 60 Hz

Etanorm PumpDrive

DN	32 - 150
Q [m³/h]	max. 800
H [m]	max. 102
p [bar]	max. 16
T [°C]	max. +140
n [min ⁻¹]	max. 4200
Data for 50 Hz op	eration

Standardized pump with motor-mounted variable speed system

 $\label{eq:Design: Horizontal, long-coupled, single-stage volute casing pump (pump size > 125 \ \mbox{with two stages) in back pull-out design, with replaceable shaft sleeves / shaft protecting sleeves and casing wear rings. Design to ATEX.}$

Applications: Spray irrigation, irrigation, drainage, district heating, water supply systems, heating and air-conditioning systems, condensate transport, swimming pools, fire-fighting systems, handling of hot water, cooling water, fire-fighting water, oil, brine, drinking water, brackish water, service water, etc.

A PumpExpert • PumpDrive

Reference no. 1211.5 + 4070.5

Etabloc

DN	25 - 150			
Q [m³/h]	max. 660			
H [m]	max. 102			
p [bar]	max. 16			
T [°C]	max. +140			
Data for 50 Hz operation				

Close-coupled pump

Design: Close-coupled, single-stage volute casing pump, ratings to EN 733, with replaceable shaft sleeve and casing wear rings. Design to ATEX. **Applications:** Spray irrigation, irrigation, drainage and water cumply systems, here

Applications: Spray irrigation, irrigation, drainage and water supply systems, heating and air-conditioning systems, condensate transport, swimming pools, handling of hot water, cooling water, fire-fighting water, seawater, oil, brine, drinking water, cleaning agents, brackish water, service water, etc.

A PumpDrive • Hyamaster • hyatronic

Reference no. 1167.5

also available in 60 Hz

Etabloc PumpDrive

DN	25 - 150
Q [m³/h]	max. 800
H [m]	max. 102
p [bar]	max. 16
T [°C]	max. +110
n [min ⁻¹]	max. 4200

Close-coupled pump with motor-mounted variable speed system

Design: Close-coupled, single-stage volute casing pump, ratings to EN 733, with replaceable shaft sleeve and casing wear rings. Design to ATEX.

Applications: Spray irrigation, irrigation, drainage and water supply systems, heating and air-conditioning systems, condensate transport, swimming pools, handling of hot water, cooling water, fire-fighting water, seawater, oil, brine, drinking water, cleaning agents, brackish water, service water, etc.

A PumpDrive

Reference no. 1167.5 + 4070.5

Etachrom BC

DN	25 - 80
Q [m³/h]	max. 260
H [m]	max. 108
p [bar]	max. 12
T [°C]	max. +110
Data for 50 Hz operation	

Close-coupled chrome steel pump

Design: Close-coupled, horizontal, single-stage annular casing pump, with ratings and main dimensions to EN 733, with replaceable casing wear rings.

Design to ATEX.

Applications: Spray irrigation, irrigation, drainage and water supply systems, heating and air-conditioning systems, fire-fighting systems, swimming pools, handling of condensate, hot water, cooling water, fire-fighting water, oil, drinking water, cleaning agents, service water.

A Hyamaster • hyatronic

Reference no. 1213.5

also available in 60 Hz

Automation possible

Standardized / close-coupled pumps, fixed / variable speed

Etachrom BC PumpDrive

DN	25 - 80
Q [m³/h]	max. 260
H [m]	max. 106
p [bar]	max. 12
T [°C]	max. +110
n [min ⁻¹]	max. 3500

Close-coupled chrome steel pump with motor-mounted variable speed system

Design: Close-coupled, horizontal, single-stage annular casing pump, with ratings and main dimensions to EN 733, with replaceable casing wear rings and motormounted variable speed system.

Applications: Spray irrigation, irrigation, drainage and water supply systems, heating and air-conditioning systems, fire-fighting systems, swimming pools, handling of condensate, hot water, cooling water, fire-fighting water, oil, drinking water, cleaning agents, service water.

A PumpDrive

Reference no. 1213.5 + 4070.5

Etachrom NC

DN	25 - 80
Q [m³/h]	max. 260
H [m]	max. 106
p [bar]	max. 12
T [°C]	max. +110
Data for 50 Hz operation	

Standardized chrome steel pump

Design: Horizontal, single-stage annular casing pump, with ratings and main dimensions to EN 733, with replaceable casing wear rings. Design to ATEX. **Applications:** Water supply, spray irrigation, irrigation and drainage systems, heating and air-conditioning systems, handling of drinking water, service water, hot water, cooling water, swimming pool water, fire-fighting water, condensate, oil and cleaning agents.

A Hyamaster • hyatronic

Reference no. 1212.5

also available in 60 Hz

Etachrom NC PumpDrive

Standardized chrome steel pump with motor-mounted variable speed system

Design: Horizontal, single-stage annular casing pump, with ratings and main dimensions to EN 733, with replaceable casing wear rings and motor-mounted variable speed system.

Applications: Water supply, spray irrigation, irrigation and drainage systems, heating and air-conditioning systems, handling of drinking water, service water, hot water, cooling water, swimming pool water, fire-fighting water, condensate, oil and cleaning agents.

A PumpDrive

Reference no. 1212.5 + 4070.5

Etanorm GPV/CPV

DN	32 - 150
Q [m³/h]	max. 660
H [m]	max. 102
p [bar]	max. 16
T [°C]	max. +95
Data for 50 Hz operation	

Design: Single-stage volute casing pump, ratings to EN 733, for vertical installa-

tion in closed tanks under atmospheric pressure. Up to an immersion depth of 2000 m.

Applications: Handling of peutral degreasing and phosphatizing solutions, wash

Applications: Handling of neutral degreasing and phosphatizing solutions, wash water with degreasing agents, dipping paints, etc.

Reference no. 1214.5

also available in 60 Hz

Vertical low-pressure pump

Hot water pumps

HPK-L

DN 25 - 250
Q [m³/h] max. 1330
H [m] max. 155
p [bar] max. 40
T [°C] max. +240 / +350
Data for 50 Hz operation

 $\label{lem:cooling} \mbox{Hot water / thermal oil recirculation pump without external cooling}$

Design: Horizontal, radially split volute casing pump in back pull-out design to EN 22 858 / ISO 2858 / ISO 5199, single-stage, single-entry, with radial impeller. Equipped with heat barrier, seal chamber air-cooled by integrated fan impeller, no external cooling. Design to ATEX.

Applications: Handling of hot water in piping or tank systems, particularly in medium-sized and large heating systems, forced circulation boilers, district heating systems, etc.

A PumpExpert • Hyamaster • hyatronic

Reference no. 1136.5

also available in 60 Hz

Hot water recirculation pump

HPK

DN 300 - 400
Q [m³/h] max. 4150
H [m] max. 185
p [bar] max. 40
T [°C] max. +400
Data for 50 Hz operation

Design: Horizontal, radially split volute casing pump in back pull-out design to

EN 22 858 / ISO 2858 / ISO 5199, single-stage, single-entry, with radial impeller. TÜV certification to TRD on option. Design to ATEX.

Applications: Handling of hot water and thermal oil in pioing or tank systems.

Applications: Handling of hot water and thermal oil in piping or tank systems, particularly in medium-sized and large heating systems, forced circulation boilers, district heating systems, etc.

A PumpExpert • Hyamaster • hyatronic

Reference no. 1121.51

also available in 60 Hz

HPH

DN 40 - 350
Q [m³/h] max. 2350
H [m] max. 225
p [bar] max. 110
T [°C] max. +320
Data for 50 Hz operation

Hot water recirculation pump

Design: Horizontal, radially split volute casing pump in back pull-out design, single-stage, single-entry, with centreline pump feet and radial impeller. TÜV certification to TRD on option. Design to ATEX.

Applications: Handling of hot water in high-pressure hot water generation plants and for use as boiler feed and recirculation pump.

A Hyamaster • hyatronic

Reference no. 1122.5

also available in 60 Hz

Hot water / thermal oil pumps

Etanorm SYA / RSY

DN 32 - 300
Q [m³/h] max. 1900
H [m] max. 102
p [bar] max. 16
T [°C] max. +350
Data for 50 Hz operation

Hot water / thermal oil pump

Design: Horizontal, long-coupled volute casing pump in back pull-out design with ratings and main dimensions to EN 733, single-stage, with replaceable casing wear rings. Design to ATEX.

Applications: Heat transfer systems (DIN 4754, VDI 3033) or hot water recirculation

A PumpExpert • Hyamaster • hyatronic

Reference no. 1220.5

also available in 60 Hz

Automation possible

21

Hot water / thermal oil pumps

Etabloc SY / Etaline SY

Hot water / thermal oil pump

DN	32 - 100
Q [m³/h]	max. 280
H [m]	max. 67
p [bar]	max. 16
T [°C]	max. +350
Data for 50 Hz operation	

Design: Horizontal, single-stage volute casing pump in back pull-out design with ratings and main dimensions to EN 733, or in in-line design, with replaceable casing wear rings.

Applications: Heat transfer systems (DIN 4754) or hot water recirculation.

A PumpExpert • Hyamaster • hyatronic

Reference no. 1170.5

also available in 60 Hz

Thermal oil pumps with magnetic drive / canned motor

Etamagno SY / SYI / Bloc SY

Thermal oil pump

DN	32 - 150
Q [m³/h]	max. 660
H [m]	max. 102
p [bar]	max. 16
T [°C]	max. +350
Data for 50 Hz operation	

Design: Horizontal, seal-less, single-stage volute casing pump with magnetic drive, ratings and main dimensions to EN 733, with replaceable casing wear rings. Applications: Handling of thermal oil in heat transfer systems to DIN 4754.

A PumpExpert • Hyamaster • hyatronic

Reference no. 1218.5

also available in 60 Hz

(Only available in Europe, Russia, Middle East and Africa)

HX (Nikkiso-KSB)

Thermal oil pump

DN	32 - 100
Q [m³/h]	max. 200
H [m]	max. 100
p [bar]	max. 40
T [°C]	max. +350
Data for 50 Hz operation	

Design: Horizontal, seal-less, single-stage pump with fully enclosed canned motor, uncooled, cooled or heatable, with explosion protection. Design to ATEX. Applications: Handling of thermal oils and other hot fluids in heat transfer systems to DIN 4754.

also available in 60 Hz

(Only available in Europe, Russia, Middle East and Africa)

HY (Nikkiso-KSB)

Thermal oil pump

DN	32 - 80
Q [m³/h]	max. 150
H [m]	max. 100
p [bar]	max. 40
T [°C]	max. +250
Data for 50 Hz operation	

Design: Horizontal, seal-less, single-stage pump with fully enclosed canned motor, uncooled, cooled or heatable, with explosion protection. Design to ATEX. Applications: Handling of thermal oils and other hot fluids in heat transfer systems to DIN 4754.

Standardized chemical pumps

CPKN

DN 25 - 400
Q [m³/h] max. 4150
H [m] max. 185
p [bar] max. 25
T [°C] max. +400
Data for 50 Hz operation

Standardized chemical pump with reinforced bearing bracket

Design: Horizontal, radially split volute casing pump in back pull-out design to EN 22 858 / ISO 2858 / ISO 5199, single-stage, single-entry, with radial impeller. Also available as variant with "wet" shaft, conical seal chamber, heatable volute casing (CPKNO-CHs) and/or semi-open impeller (CPKNO). Design to ATEX. **Applications:** Handling of aggressive liquids in the chemical and petrochemical industries as well as in refinery and fire-fighting systems, handling of brine.

A PumpExpert • Hyamaster • hyatronic

Reference no. 2730.5

also available in 60 Hz

CPKN PumpDrive

DN 25 - 300
Q [m³/h] max. 1050
H [m] max. 220
p [bar] max. 25
T [°C] max. +110
n [min⁻¹] max. 3600

Design: Horizontal, radially split volute casing pump in back pull-out design to EN 22 858 / ISO 2858 / ISO 5199, single-stage, single-entry, with radial impeller. Also available as variant with "wet" shaft, conical seal chamber and/or semi-open impeller (CPKNO) with motor-mounted variable speed system.

Standardized chemical pump with reinforced bearing bracket and motor-mounted variable speed system

Applications: Handling of aggressive liquids in the chemical and petrochemical industries as well as in refinery and fire-fighting systems.

A PumpDrive

Reference no. 2730.5 + 4070.5

CPK-D

DN	32 - 250
Q [m³/h]	max. 1100
H [m]	max. 128
p [bar]	max. 25
T [°C]	max. +150
Data for 50 Hz operation	

Standardized chemical pump with hydrodynamic shaft seal

Design: Horizontal, radially split volute casing pump in back pull-out design to ISO 2858, single-stage, single-entry, with radial impeller and zero-leakage hydrodynamic shaft seal.

Applications: Handling of liquids in the chemical and petrochemical industry, in refineries and paint shops.

A PumpExpert • Hyamaster • hyatronic

Reference no. 2726.1

Seal-less pumps

Magnochem

25 - 250	
max. 1250	
max. 153	
max. 25	
max. +300	
Data for 50 Hz operation	

Standardized chemical pump with mag-drive

Design: Horizontal, seal-less, mag-drive volute casing pump in back pull-out design to ISO 2858 / EN 22 858 / ISO 5199, single-stage, single-entry, with radial impeller, seal-less. Design to ATEX.

Applications: Handling of aggressive, toxic, explosive, valuable, flammable, malodorous or harmful liquids in the chemical, petrochemical and general industry.

A PumpExpert • Hyamaster • hyatronic

Reference no. 2739.5

also available in 60 Hz

Magnochem - Bloc

DN	25 - 125
Q [m³/h]	max. 240
H [m]	max. 153
p [bar]	max. 25
T [°C]	max. +250
Data for 50 Hz operation	

Close-coupled chemical pump with mag-drive

Design: Close-coupled, mag-drive volute casing pump to ISO 2858 / EN 22 858 / ISO 5199, single-stage, single-entry, with radial impeller, seal-less. Design to ATEX. **Applications:** Handling of aggressive, toxic, explosive, valuable, flammable, malodrous or harmful liquids in the chemical, petrochemical and general industry.

A PumpExpert • Hyamaster • hyatronic

Reference no. 2749.5

also available in 60 Hz

Water motor pumps with canned motor

Etaseco / Etaseco-I

DN	32 - 100
Q [m³/h]	max. 250
H [m]	max. 100
p [bar]	max. 16
T [°C]	max. +140
Data for 50 Hz operation	

Design: Horizontal / vertical, seal-less volute casing pump in back pull-out design with fully enclosed canned motor, low noise emission, with radial impeller, single-stage, single-entry, pump casing connecting dimensions to EN 733.

Applications: Handling of aggressive, flammable, toxic, volatile, or valuable

Applications: Handling of aggressive, flammable, toxic, volatile, or valuable liquids in the chemical and petrochemical industry, in environmental engineering and the general industry.

A PumpExpert • Hyamaster • hyatronic

Reference no. 2935.5

also available in 60 Hz

Secochem Ex

DN	25 - 100
Q [m³/h]	max. 300
H [m]	max. 150
p [bar]	max. 25
T [°C]	max. +130
Data for 50 Hz operation	

Standardized chemical pump with canned motor and explosion protection

Design: Horizontal, seal-less volute casing pump in back pull-out design with fully enclosed canned motor, low noise emission, with radial impeller, single-stage, single-entry, casing connecting dimensions to EN 22 858 / ISO 2858, with explosion protection. Design to ATEX.

Applications: Handling of aggressive, flammable, explosive, toxic, volatile or valuable liquids in the chemical and petrochemical industry, in environmental engineering and the general industry.

A PumpExpert • Hyamaster • hyatronic

Reference no. 2939.5

also available in 60 Hz

Secochem Ex K

DN	25 - 100
Q [m³/h]	max. 300
H [m]	max. 150
p [bar]	max. 25
T [°C]	max. +400
Data for 50 Hz operation	

Standardized chemical pump with canned motor and explosion protection

Design: Horizontal, seal-less volute casing pump in back pull-out design with fully enclosed canned motor, low noise emission, with radial impeller, single-stage, single-entry, pump casing connecting dimensions to EN 22 858 / ISO 2858, with explosion protection and external cooler. Design to ATEX.

Applications: Handling of aggressive, flammable, explosive, toxic, volatile or valuable liquids in the chemical and petrochemical industry, in environmental engineering and the general industry.

A PumpExpert • Hyamaster • hyatronic

Reference no. 2939.51

Seal-less pumps

(Only available in Europe, Russia, Middle East and Africa)

HN / BN / TN (Nikkiso-KSB)

DN	32 - 300
Q [m³/h]	max. 800
H [m]	max. 200
p [bar]	max. 40
T [°C]	max. +180
Data for 50 Hz operation	

Chemical pump with canned motor, explosion-proof

Design: Horizontal (HN) or vertical (BN / TN), seal-less, single-stage pump with fully enclosed canned motor, uncooled, optional cooling or heating, with explosion protection. Design to ATEX.

Applications: Handling of aggressive, flammable, explosive, toxic, volatile or valuable liquids in the chemical and petrochemical industry.

also available in 60 Hz

(Only available in Europe, Russia, Middle East and Africa)

HT / BT / TT (Nikkiso-KSB)

DN	32 - 300
Q [m³/h]	max. 800
H [m]	max. 200
p [bar]	max. 40
T [°C]	max. +400
Data for 50 Hz operation	

Chemical pump with canned motor, explosion-proof, for special applications

Design: Horizontal (HT) or vertical (BT /TT), seal-less, single-stage pump with fully enclosed canned motor, with cooling, with explosion protection. Design to ATEX

Applications: Handling of aggressive, solids containing, polymerizing, flammable, explosive, toxic, volatile or valuable liquids as well as thermal oils in the chemical and petrochemical industry.

also available in 60 Hz

(Only available in Europe, Russia, Middle East and Africa)

HK (Nikkiso-KSB)

DN	25 - 40
Q [m³/h]	max. 10
H [m]	max. 220
p [bar]	max. 40
T [°C]	max. +150
n [min-1]	max. 8400
Data for n = 9400	min ⁻¹

Double-stage canned motor pump

Design: Horizontal, seal-less pump with fully enclosed canned motor, twostage design in tandem arrangement, with explosion protection. Design to ATEX.

Applications: Handling of aggressive, flammable, explosive, toxic, volatile or valuable liquids in the chemical and petrochemical industry. For small flow rates, high discharge heads and low NPSH $_{\rm R}$.

high speed, up to 130 Hz

(Only available in Europe, Russia, Middle East and Africa)

VN (Nikkiso-KSB)

DN	40 - 100
Q [m³/h]	max. 140
H [m]	max. 450
p [bar]	max. 40
T [°C]	max. +180
Data for 50 Hz operation	

Multistage canned motor pump

Design: Horizontal, seal-less pump with fully enclosed canned motor, multistage, with explosion protection. Design to ATEX.

Einsatz: Handling of aggressive, flammable, explosive, toxic, volatile or valuable liquids in the chemical and petrochemical industry. For high discharge heads.

also available in 60 Hz

(Only available in Europe, Russia, Middle East and Africa)

DN (Nikkiso-KSB)

DN	32 - 50
Q [m³/h]	max. 40
H [m]	max. 60
p [bar]	max. 40
T [°C]	max. +180
Data for 50 Hz operation	

Self-priming canned motor pump

Design: Horizontal, seal-less pump with fully enclosed canned motor, single stage, self-priming, with explosion protection. Design to ATEX.

Applications: Handling of aggressive, flammable, explosive, toxic, volatile or valuable liquids in the chemical and petrochemical industry. Self-priming pump for draining of tanks and unloading of tanks and tank trucks.

Process pumps

RPH Process pump

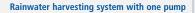
DN 25 - 400
Q [m³/h] max. 4,150
H [m] max. 270
p [bar] max. 51
T [°C] max. +450
Data for 50 Hz operation

Design: Horizontal, radially split volute casing pump in back pull-out design to API 610, 9th edition, or ISO 13709 (heavy duty), with radial impeller, single-stage, single-entry, centreline pump feet; with inducer, if required. Design to ATEX. **Applications:** Refineries, petrochemical and chemical industry, power stations.

A PumpExpert • Hyamaster • hyatronic

Reference no. 1312.5/1316.51

also available in 60 Hz


Chemical vertical shaft submersible pump **CTN** DN 25 - 250 Design: Radially split, vertical shaft submersible pump with double volute for wet max. 800 Q [m³/h] and dry installation, single- or double stage, single-entry, with radial impeller; hea-H [m] max. 93 table model available. Design to ATEX. Applications: Handling of chemically aggressive liquids, also slightly contaminated max. 16 p [bar] T [°C] or with a low solids content, in the chemical and petrochemical industry. max. +300 Data for 50 Hz operation A Hyamaster • hyatronic Reference no. 2711.5 also available in 60 Hz

Micro-process engineering

Microchem Centrifugal pump for micro-process engineering Design: Pump unit consisting of a variable-speed single-stage centrifugal pump with Q [ml/min] max. 5000 H [m] max. 250 directly flanged motor and control unit. p [bar] max. 25 Applications: Continuous volume flow control for handling aggressive organic and inor--10 to +100 T [°C] ganic fluids in chemical processes. The pump is suitable for use in laboratories, pilot plants and in production processes, particularly in industrial process engineering, continuous processes, micro-process engineering, miniplants, dosing applications. Reference no. 2600.5

Rainwater harvesting systems

Hya-Rain / Hya-Rain N

Rp 1
Q [m³/h] max. 4
H [m] max. 43
p [bar] max. 6
T [°C] max. +35
Data for 50 Hz operation

Design: Ready-to-connect package rainwater harvesting system. **Applications:** Rainwater and service water utilization, irrigation and spray irrigation systems.

Reference no. 5602.51

Eco-Rain

Rp 1
Q [m³/h] max. 4
H [m] max. 43
p [bar] max. 6
T [°C] max. +35
Data for 50 Hz operation

Rainwater harvesting system with one pump

Design: Basic ready-to-connect package rainwater harvesting system. **Applications:** Rainwater and service water utilization, irrigation and spray irrigation systems.

Reference no. 5605.5

Domestic water supply systems with automatic control unit / swimming pool

Multi Eco

Rp	1-11/4
Q [m³/h]	max. 8
H [m]	max. 54
p [bar]	max. 10
T [°C]	max. +50
n [min ⁻¹]	max. 2800

Multistage, self-priming centrifugal pump

Design: Multistage, self-priming centrifugal pump in close-coupled design. **Applications:** Single- or two-family houses, agricultural facilities, spray irrigation and irrigation systems, washing plants, water supply and rainwater harvesting systems.

A Switchgears

Reference no. 5180.5

Multi Eco-Pro

Rp	1-11/4
Q [m³/h]	max. 8
H [m]	max. 54
p [bar]	max. 10
T [°C]	max. +50
n [min ⁻¹]	max. 2800

Multistage, self-priming centrifugal pump with automatic control unit

Design: Multistage, self-priming centrifugal pump in close-coupled design, with power supply cable, plug and automatic control unit Controlmatic E switching the pump on and off as consumers are opened / closed and protecting the pump against dry running.

Applications: Single- or two-family houses, agricultural facilities, spray irrigation and irrigation systems, washing plants, water supply and rainwater harvesting systems.

A Switchgears

Reference no. 5182.5

Domestic water supply systems with automatic control unit / swimming pool

Multi Eco-Top

Rp	1-11/4
Q [m³/h]	max. 8
H [m]	max. 54
p [bar]	max. 7
T [°C]	max. +50
n [min ⁻¹]	max. 2800

Domestic water supply system

Design: Multistage, self-priming centrifugal pump in close-coupled design incl. accumulator with replaceable membrane in drinking water quality, total volume 20 or 50 l, pressure switch for automatic pump operation and 1.5 m power supply cable.

Applications: Single- or two-family houses, agricultural facilities, spray irrigation and irrigation systems, washing plants, water supply and rainwater harvesting systems.

Reference no. 5181.5

Movitec VE

Rp	11/2
Q [m³/h]	max. 12
H [m]	max. 70
p [bar]	max. 10
T [°C]	max. +60
n [min ⁻¹]	max. 2900

High-pressure in-line pump in close-coupled design

Design: Multistage, vertical (horizontal installation upon request) high-pressure centrifugal pump, with suction and discharge nozzles of identical nominal diameters arranged opposite to each other (in-line design).

Applications: Single- or two-family houses, agricultural facilities, spray irrigation and irrigation systems, washing plants, water supply and rainwater harvesting systems, pressure boosting, hot water and cooling water recirculation, fire-fighting systems.

Reference no. 1798.5

also available in 60 Hz

Submersible motor pump

Ixo

Rp	11/4
Q [m³/h]	max. 8
H [m]	max. 65
T [°C]	max. +35
n [min ⁻¹]	max. 2900

Design: Fully or partly submerged, multistage, close-coupled centrifugal pump (min. immersion depth 0.1 m), low-level inlet, suction strainer with a max. mesh size of 2.5 mm.

Applications: Water supply, spray irrigation and irrigation systems, washing plants, rainwater harvesting systems, water extraction from wells, tanks and cictoria.

A Switchgears

Reference no. 2146.5

Filtra

Rp	2
Q [m³/h]	max. 36
H [m]	max. 21
p [bar]	max. 2.5
T [°C]	max. +35
n [min ⁻¹]	max. 2800

Recirculating pump for swimming pool filtering systems

Design: Self-priming, single-stage, close-couped centrifugal pump. **Applications:** Handling of clean or slightly contaminated water, swimming pool water with a chlorine content of up to 0.3 %, ozonized swimming pool water with a salt content of up to 7 ‰.

Reference no. 2127.5

Pressure boosting units

Hya-Solo E

Rp 11/4
Q [m³/h] max. 6
H [m] max. 50
p [bar] max. 10
T [°C] max. +60

Pressure boosting unit, 1 pump

Design: Fully automatic package single-pump unit with 8 I membrane-type accumulator, pressure-controlled start-up and flow-controlled shutdown. **Applications:** Water supply systems for residential and office buildings, irrigation/ spray irrigation and rainwater harvesting systems, service water supply systems in trade and industry.

Reference no. 1951.5

Hya-Solo D

Rp / DN	11/4 / 100
Q [m³/h]	max. 75
H [m]	max. 150
p [bar]	max. 16
T [°C]	max. +70
Data for 50 Hz operation	

Pressure boosting unit, 1 pump

Design: Fully automatic package single-pump unit with 8 l membrane-type accumulator, pressure-controlled start-up and flow-controlled shutdown. **Applications:** For industrial plants, water supply systems for residential and office buildings, irrigation/spray irrigation and rainwater harvesting systems, service water supply systems in trade and industry.

Reference no. 1951.5

Hya-Solo DV

Rp / DN	11/4 / 100
Q [m³/h]	max.110
H [m]	max. 150
p [bar]	max. 16
T [°C]	max. +70
Data for 2900 min ⁻¹	

Pressure boosting unit, 1 pump

Design: Fully automatic variable-speed package single-pump unit with PumpDrive, pressure-controlled start-up and flow-controlled shutdown.

Applications: For industrial plants, water supply systems for residential and office buildings, irrigation/spray irrigation and rainwater harvesting systems, service water supply systems in trade and industry.

A PumpDrive

Reference no. 1951.5

Hya-Eco K

Rp / DN	2 / 80
Q [m³/h]	max. 70
H [m]	max. 100
p [bar]	max. 10
T [°C]	max. +70
Data for 50 Hz operation	

Pressure boosting unit, 2 to 3 pumps

Design: Fully automatic package pressure boosting unit, with 2 to 3 vertical high-pressure pumps, fully electronic control to ensure the required supply pressure, standard version with volt-free contact for general fault indication and live-zero monitoring of the connected sensors, configuration and functions to DIN 1988, part 5. **Applications:** Residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.

Reference no. 1967.5

Hya-Eco VP

Rp / DN	2 / 80
Q [m³/h]	max. 70
H [m]	max. 120
p [bar]	max. 12
T [°C]	max. +70
Data for 3500 min ⁻¹	

Pressure boosting unit with continuously variable speed control of each pump

Design: Fully automatic pressure boosting package unit, with 2 to 3 vertical high-pressure pumps and continuously variable speed adjustment of each pump for fully electronic control of the required supply pressure, with two standard volt-free changeover contacts for fault indication. Configuration and functions to DIN 1988, Part 5.

Applications: Residential buildings, hospitals, office buildings, hotels, department stores, industry, and other applications

Reference no. 1967.52

Pressure boosting units

Hyamat K

Rp / DN 1½ / 250 Q [m³/h] max. 660 H [m] max. 160 p [bar] max. 16 T [°C] max. +70

Pressure boosting unit, 2 to 6 pumps

Design: Fully automatic package pressure boosting unit, with 2 to 6 vertical high-pressure pumps, fully electronic control to ensure the required supply pressure, with volt-free contact for general fault indication and live-zero monitoring of the connected sensors, configuration and functions to DIN 1988, part 5.

Applications: Residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.

Reference no. 1952.5

Hyamat V

Rp / DN 1½ / 250
Q [m³/h] max. 660
H [m] max. 160
p [bar] max. 16
T [°C] max. +70
Data for 2900 min¹

Pressure boosting unit with continuously variable speed adjustment of one pump

Design: Fully automatic package pressure boosting unit, with 2 to 6 vertical high-pressure pumps and continuously variable speed adjustment of one pump for fully electronic control of the required supply pressure, configuration and functions to DIN 1988, part 5.

Applications: Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.

A hyatronic

Reference no. 1953.51

Hyamat VP

Rp / DN 1½ / 250
Q [m³/h] max. 660
H [m] max. 160
p [bar] max. 16
T [°C] max. +70
Data for 2900 min¹

Pressure boosting unit with continuously variable speed control of each pump

Design: Fully automatic pressure boosting package unit with 2 to 6 vertical high-pressure pumps and continuously variable speed control of each pump by PumpDrive speed control system. For fully electronic control of the required supply pressure; configuration and functions to DIN 1988, Part 5.

Applications: Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.

A PumpDrive

Reference no. 1953.52

Hyamat IK, IV, IVP

DN 100 - 200
Q [m³/h] max. 640
H [m] max. 160
p [bar] max. 16
T [°C] max. +70
Data for 50 Hz operation

Pressure boosting unit for industrial applications

Design: Fully automatic package pressure boosting unit, with 2 to 4 vertical highpressure pumps and fully electronic control to ensure the required supply pressure, configuration and functions to DIN 1988, part 5.

Applications: Handling of service water and cooling water not chemically or mechanically aggressive to the pump materials in industry, etc.

A Hyamaster • hyatronic

Reference no. 1950.5

Drainage pumps / waste water pumps

Ama®-Drainer 301, 303, 324, 356

Rp 11½ - 1½
Q [m³/h] max. 17
H [m] max. 12
T [°C] max. +35
Data for 50 Hz operation

Design: Vertical, fully floodable submersible motor pump in close-coupled design, IP 68, single-stage, with or without level control, max. immersion depth 2 m. **Applications:** Automatic drainage of pits, shafts, yards and cellars subject to a flooding risk, lowering of surface water levels, dewatering, drainage of underground passages, water extraction from rivers and reservoirs.

A Switchgears • LevelControl

Reference no. 2331.51 / 2331.52

Ama®-Drainer 400/10 400/35 500/10/11

Rp 1½ - 2
Q [m³/h] max. 50
H [m] max. 24
T [°C] max. +40
Data for 50 Hz operation

Design: Vertical, fully floodable submersible motor pump in close-coupled design, IP 68, single-stage, with or without level control, max. immersion depth 10 m. **Applications:** Automatic drainage of pits, shafts, yards and cellars subject to a flooding risk, lowering of surface water levels, dewatering, drainage of underground passages, water extraction from rivers and reservoirs, disposal of highly contaminated, fibre-containing water.

A Switchgears • LevelControl

Reference no. 2331.53

Ama®-Drainer 80, 100

Floodable submersible motor pump

Rp / DN 2½ / 100
Q [m³/h] max. 130
H [m] max. 26
T [°C] max. +50
Data for 50 Hz operation

Design: Vertical, fully floodable submersible motor pump in close-coupled design, IP 68, single-stage, with or without level control, max. immersion depth 10 m. **Applications:** Automatic drainage of pits, shafts, yards and cellars subject to a flooding risk, lowering of surface water levels, dewatering, drainage of underground passages, water extraction from rivers and reservoirs.

A Switchgears • LevelControl

Reference no. 2331.54

Ama®-Porter F / S / ICS

Floodable submersible motor pump

DN 50 - 65
Q [m³/h] max. 40
H [m] max. 21
T [°C] max. +40
Data for 50 Hz operation

Design: Vertical, fully floodable submersible waste water pump in close-coupled design (cast iron variant), single-stage, without explosion protection. **Applications:** Handling of all types of waste water.

A Switchgears • LevelControl

Reference no. 2541.51/2539.51/2539.52/2539.53

Rotex

Waste water pump

Rp 11/4 - 2
Q [m³/h] max. 24
H [m] max. 14
T [°C] max. +90
Data for 50 Hz operation

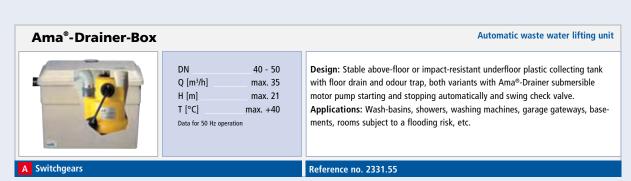
Design: Vertical, single-stage centrifugal pump with discharge to the top and parallel with the pump shaft, pump foot designed as suction strainer. Pump and motor are rigidly connected by a support pipe, ready to be plugged in, with 1.5 m power supply cable and level switch.

Applications: Automatic disposal of waste water from buildings, pits and tanks, lowering of surface water levels and drainage.

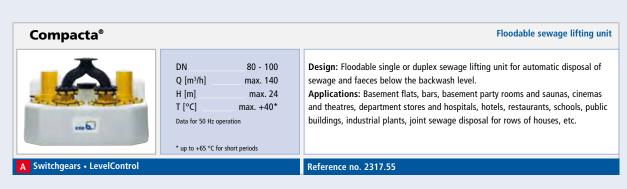
A Switchgears

Reference no. 2322.5

Automation possible


Drainage pumps / waste water pumps

MK / MKY Waste water, condensate and heat transfer liquid pump Rp / DN 2 / 50 Design: Vertical submersible pump with three-channel impeller, volute casing desi-Q [m³/h] max. 36 gned as suction strainer. H [m] max. 19 Applications: Handling of condensate and heat transfer liquids below the boiling T [°C] max. +200 point, condensate return systems, primary and secondary heating circuits, direct Data for 50 Hz operation installation in heating tanks or heat exchangers in the secondary circuits of heat transfer systems (MKY).


Reference no. 2324.5

Lifting units / collecting tanks

A Switchgears • LevelControl

Lifting units / collecting tanks

Ama®-Porter CK Pumping Station

Pumping station, plastic collecting tank with Ama®-Porter

DN 50 - 65
Q [m³/h] max. 40
H [m] max. 21
T [°C] max. +40
Data for 50 Hz operation

Design: Ready-to-connect package single or dual pumping station with PE-LLD (polyethylene) collecting tank for underground installation. Equipped with one or two Ama®-Porter submersible waste water pumps without explosion protection. Collecting tank design to DIN 1986-100 and EN 752 / EN 476.

Applications: Renovation of premises, sewage disposal in various sectors, joint sewage disposal for several residential units, pumped drainage.

A Switchgears

Reference no. 2334.51

Amarex N CK Pumping Station

DN 32 - 65
Q [m³/h] max. 190
H [m] max. 49
T [°C] max. +40
Data for 50 Hz operation

Pumping station, plastic collecting tank with Amarex N

Design: Ready-to-connect package single or dual pumping station with PE-LLD (polyethylene) collecting tank for underground installation. Equipped with one or two Amarex N submersible waste water pumps, also available with explosion protection. Collecting tank design to DIN 1986-100 and EN 752 / EN 476. **Applications:** Renovation of premises, sewage disposal in various sectors, joint sewage disposal for several residential units, pumped drainage.

A Switchgears • LevelControl

Reference no. 2334.52

also available in 60 Hz

Sewage lifting unit

Sewage lifting unit

Evamatic-Box

DN 50 - 65
Q [m³/h] max. 40
H [m] max. 21
T [°C] max. +40
Data for 50 Hz operation

Design: Single or duplex sewage lifting unit with 1 or 2 Ama®-Porter submersible waste water pumps with free-flow impeller (F) or cutter (S), to EN 12050-1. **Applications:** Disposal of domestic waste water and sewage.

Reference no. 2319.51-10

Evamatic-Box ICS

DN 50 - 65
Q [m³/h] max. 40
H [m] max. 21
T [°C] max. +40
Data for 50 Hz operation

Design: Single or duplex sewage lifting unit with 1 or 2 Ama®-Porter ICS submersible waste water pumps with free-flow impeller (F) or cutter (S) and ICS control system.

Applications: Disposal of domestic waste water and sewage.

Reference no. 2319.52-10

Submersible motor pumps

Amarex N

Submersible motor pump DN 32 to 100

DN 32 - 100
Q [m³/h] max. 190
H [m] max. 49
T [°C] max. +55
Data for 50 Hz operation

Design: Vertical, single-stage submersible motor pump, for wet installation, stationary and transportable design. Amarex N pumps are floodable, single-stage, single-entry close-coupled units which are not self-priming. Design to ATEX. **Applications:** Handling of all types of waste water, especially untreated sewage containing long fibres and solid substances, fluids containing gas / air, as well as raw, activated and digested sludge, dewatering / water extraction, drainage of rooms and surfaces subject to a flooding risk.

A Switchgears • LevelControl

Reference no. 2563.5

also available in 60 Hz

Amarex KRT

DN 40 - 700
Q [m³/h] max. 10800
H [m] max. 100
T [°C] max. +60
n [min¹] max. 2900

Design: Vertical, single-stage submersible motor pump in close-coupled design, various impeller types, for wet or dry installation, stationary and transportable version. Design to ATEX.

Applications: Handling of all types of abrasive or aggressive waste water in water and waste water engineering as well as industry, especially untreated sewage containing long fibres and solid substances, fluids containing gas / air, as well as raw, activated and digested sludge; sea water desalination.

A PumpExpert • Hyamaster • hyatronic • Switchgears • LevelControl

Reference no. 2553.5

also available in 60 Hz

Amarex KRT, dry installed

DN	100 - 700
Q [m³/h]	max. 10000
H [m]	max. 100
p [bar]	max. 10
T [°C]	max. +40
n [min ⁻¹]	max. 1450

Submersible motor pump DN 100 to DN 700

Submersible motor pump DN 40 to DN 700

Design: Vertical, single-stage submersible motor pump in close-coupled design, various impeller types, dry installation.

Applications: Handling of all types of waste water in waste water engineering and industry, especially sewage containing long fibres and solid substances, fluids containing gas/air, as well as raw, activated and digested sludge.

A PumpExpert • Hyamaster • hyatronic

Reference no. 2553.57

also available in 60 Hz

Submersible pumps in discharge tubes

Amacan K

DN	700 - 1400
Q [m³/h]	max. 7200
H [m]	max. 30
T [°C]	max. +40
n [min ⁻¹]	max. 980

Submersible motor pump with non-clogging impeller

Design: Wet-installed submersible motor pump with non-clogging impeller, single-stage, single-entry, for installation in discharge tubes, explosion protection to ATEX II G2 T3

Applications: Handling of pre-cleaned, chemically neutral waste water, industrial effluents and sewage, fluids not containing any stringy substances pre-treated by screens and sills, as waste water, mixed water and activated sludge pump in effluent treatment plants, irrigation and drainage pumping systems.

A PumpExpert • Hyamaster • hyatronic

Reference no. 1579.5

Submersible pumps in discharge tubes

Amacan P

DN 500 - 1500
Q [m³/h] max. 25200
H [m] max. 12
T [°C] max. +40
n [min¹] max. 1450

Submersible motor pump with axial propeller

Submersible motor pump with mixed flow impeller

Design: Wet-installed, submersible motor pump with axial propeller in ECB design for installation in discharge tubes, single-stage, single-entry, explosion protection to ATEX II G2 T3.

Applications: Irrigation and drainage pumping stations, stormwater pumping stations, handling of raw and clean water in water and effluent treatment plants, of cooling water in power stations and industrial plants, industrial water supply systems, water pollution and flood control systems, aquaculture.

A PumpExpert • Hyamaster • hyatronic

Reference no. 1580.5

also available in 60 Hz

Amacan S

DN 650 - 1300
Q [m³/h] max. 10800
H [m] max. 40
T [°C] max. +30
n [min¹] max. 1450

Design: Wet-installed submersible motor pump with mixed flow impeller, single-stage, for installation in discharge tubes, explosion protection to ATEX II G2 T3. **Applications:** Handling of water without stringy substances in irrigation and drainage pumping systems, general water supply systems, water pollution and flood control systems.

A PumpExpert • Hyamaster • hyatronic

Reference no. 1589.5

also available in 60 Hz

Mixers / agitators / tank cleaning units

Amamix

Propeller ø [mm] 200 - 600 Installation depth [m] max. 30 T [°C] max. +40 n [min¹] max. 1400

Design: Horizontal submersible mixer with self-cleaning ECB propeller, close-coupled design, direct drive or with gear unit, explosion protection to ATEX II G2 T3 or T4.

Applications: Handling of municipal and industrial waste water and sludges, also in environmental engineering (biogas plants, etc.).

Reference no. 1592.551/1592.552

also available in 60 Hz

Submersible agitator

Submersible mixer

Amaprop

Design: Horizontal submersible agitator with self-cleaning ECB propeller, close-coupled design, equipped with coaxial spur gear, explosion protection to ATEX II G2. T3 or T4.

Applications: Circulating, keeping in suspension and inducing flow in municipal and industrial waste water and sludges, also in environmental engineering (biogas plants, etc.).

Reference no. 1592.505

Mixers / agitators / tank cleaning units

Cleaning system **Amajet**

DN	100 - 150
Q [m³/h]	max. 195
T [°C]	max. +40
n [min ⁻¹]	max. 1450

Design: Stationary or portable unit with horizontal or vertical submersible motor propulsive jet pump with non-clogging free-flow impeller. Motor rating 5.5 to 27 kW. Available variants: Amajet, SewerAmajet, SwingAmajet, MultiAmajet. Applications: Cleaning of stormwater tanks and storage sewers.

Reference no. 1574.5

Submersible motor recirculation pump **Amaline**

DN	300 - 800
Q [m³/h]	max. 5400
H [m]	max. 2
T [°C]	max. +40
n [min ⁻¹]	max. 960

Design: Wet-installed, horizontal propeller pump with submersible motor, equipped with spur gear or direct drive, ECB propeller with 3 rigid, fibre-repellent blades, boltfree connection to the discharge pipe, explosion protection to ATEX II G2 T3

Applications: Recirculation of activated sludge in waste water treatment systems.

Reference no. 1594.5

Pumps for solids-laden fluids

Sewatec / Sewabloc

DN	50 - 700
Q [m³/h]	60 - 10000
H [m]	max. 95
p [bar]	max. 10
T [°C]	max. +70
n [min ⁻¹]	max. 2900

Design: Horizontal or vertical volute casing pump with free-flow (F), single vane (E), multi-vane (K) and diagonal single vane (D) impellers, discharge flange to DIN

and ANSI standards. Design to ATEX. Applications: Handling of sewage and all types of waste water in waste water management and industry.

A PumpExpert • Hyamaster • hyatronic

Reference no. 2580.5/2580.45/2580.35

also available in 60 Hz

Dry-installed volute casing pump

KWP / KWP-Bloc

DN	40 - 800
Q [m³/h]	max. 1300
H [m]	max. 100
p [bar]	max. 10
T [°C]	max. +280
n [min ⁻¹]	max. 2900

Non-clogging impeller centrifugal pump / close-coupled unit

Design: Horizontal, radially split volute casing pump in back pull-out or closecoupled design, single-stage, single-entry, available with various impeller types: non-clogging impeller, open multi-vane impeller, free-flow impeller. Design to

Applications: Handling of pre-treated sewage, waste water, all types of slurries without stringy substances and pulps up to 5 % bone dry with a maximum density

A PumpExpert • Hyamaster • hyatronic

Reference no. 2361.5/2362.5/2361.450/2361.453/2361.460 also available in 60 Hz

Self-priming pumps

Etaprime L

Self-priming pump for pure or contaminated liquids

DN 25 - 125
Q [m³/h] max. 180
H [m] max. 85
p [bar] max. 10
T [°C] max. +90
Data for 50 Hz operation

Design: Horizontal, long-coupled, self-priming volute casing pump in back pull-out design, single-stage, with open multi-vane impeller. Design to ATEX.

Applications: Handling of pure, contaminated or aggressive liquids not containing abrasive substances and / or solids.

Reference no. 2745.5

also available in 60 Hz

Etaprime B / BN

DN	25 - 100
Q [m³/h]	max. 130
H [m]	max. 72
p [bar]	max. 10
T [°C]	max. +90
Data for 50 Hz operation	

Self-priming close-coupled pump for pure or contaminated liquids

Design: Horizontal, self-priming volute casing pump, single-stage, with open multivane impeller, in close-coupled design, with common pump and motor shaft (B) or rigidly connected (BN). Design to ATEX.

Applications: Handling of pure, contaminated or aggressive liquids not containing abrasive substances and / or solids.

Reference no. 2746.5

also available in 60 Hz

Submersible borehole pumps

S 100D / UPA 100C

DN	100
Q [m³/h]	max. 16
H [m]	max. 400
T [°C]	max. +30
Data for 50 Hz operation	

Design: Multistage centrifugal pump in ring-section design, made of plastic (S 100D) or stainless steel (UPA 100C) for well diameters of 100 mm (4 inches) and above, available with single-phase a.c. motor or three-phase motor with motor lead.

Applications: Domestic water supply, irrigation and spray irrigation systems, lowering of ground water levels, fire-fighting systems, cooling circuits, fountains, pressure boosting and air-conditioning systems. UPA 100C is also used for ACS drinking water.

Reference no. 3400.5

also available in 60 Hz

Submersible borehole pump

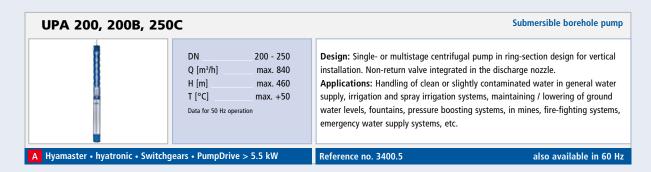
Submersible borehole pump

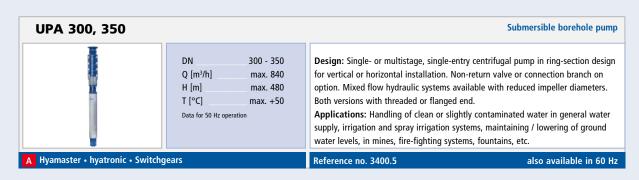
UPA 150C

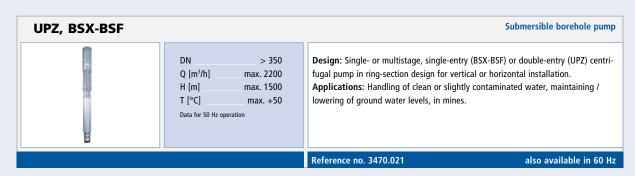
DN	150
Q [m³/h]	max. 79
H [m]	max. 570
T [°C]	max. +30
Data for 50 Hz operation	

Design: Multistage centrifugal pump in ring-section design, completely made of

stainless steel, for well diameters from 150 mm (6 inches). **Applications:** Handling of clean and slightly contaminated water, irrigation and drainage, spray irrigation, industrial and municipal water supply, maintaining / lowering of groundwater levels, fire-fighting systems, drinking, raw and service water supply, pressure boosting.


A Hyamaster • hyatronic • Switchgears • PumpDrive > 5,5 kW


Reference no. 3400.52


also available in 60 Hz

Automation possible

Submersible borehole pumps

High-pressure pumps, fixed / variable speed

Movitec V / LHS / VS / VC

High-pressure in-line pump

DN	32 - 100
Q [m³/h]	max. 102
H [m]	max. 401
p [bar]	max. 40
T [°C]	max. +140
n [min ⁻¹]	max. 2900

Design: Multistage, vertical high-pressure centrifugal pump in ring-section design with suction and discharge nozzles of identical nominal diameters arranged opposite to each other (in-line design), close-coupled. Design to ATEX. Applications: Spray irrigation, irrigation, washing, water treatment, fire-fighting and pressure boosting systems, hot water and cooling water recirculation, boiler feed systems, etc.

A PumpDrive • Hyamaster • hyatronic

Reference no. 1798.5

also available in 60 Hz

Movitec PumpDrive

DN	32 - 100
Q [m³/h]	max. 102
H [m]	max. 401
p [bar]	max. 40
T [°C]	max. +140
n [min ⁻¹]	max. 2900

High-pressure in-line pump with motor-mounted variable speed system

Design: Multistage, vertical high-pressure centrifugal pump in ring-section design with suction and discharge nozzles of identical nominal diameters arranged opposite to each other (in-line design), close-coupled and motor-mounted variable speed system

Applications: Spray irrigation, irrigation, washing, water treatment, fire-fighting and pressure boosting systems, hot water and cooling water recirculation, boiler feed systems, etc.

A PumpDrive

Reference no. 1798.5 + 4070.5

also suitable for 60 Hz operation

High-pressure pump in ring-section design

Multitec

DN	32 - 150
Q [m³/h]	max. 850
H [m]	max. 630
p [bar]	max. 63
T [°C]	max. +200
n [min ⁻¹]	max. 2900
higher values available upon request	

Design: Multistage horizontal centrifugal pump in ring-section design, longcoupled and close-coupled variant, with axial or radial suction nozzle, cast radial impellers. Design to ATEX. Applications: Water and drinking water supply systems, general industry, pressure boosting systems, irrigation systems, in power stations, heating, filter, fire-fighting,

reverse osmosis and washing plants, snow guns, etc.

A PumpExpert • PumpDrive • Hyamaster • hyatronic

Reference no. 1777.5

also available in 60 Hz

Multitec PumpDrive

DN	32 - 50
Q [m³/h]	max. 51
H [m]	max. 630
p [bar]	max. 63
T [°C]	max. +110
n [min ⁻¹]	max. 2900
higher values available upon request	

High-pressure pump in ring-section design with motor-mounted variable speed system

Design: Multistage horizontal centrifugal pump in ring-section design, longcoupled and close-coupled variant, with axial or radial suction nozzle, cast radial impellers and motor-mounted variable speed system.

Applications: Water and drinking water supply systems, general industry, pressure boosting systems, irrigation systems, in power stations, heating, filter, fire-fighting, reverse osmosis and washing plants, snow guns, etc.

A PumpDrive

Reference no. 1777.5 + 4070.5

also suitable for 60 Hz operation

Axially split pumps

Omega

Axially split volute casing pump DN 80-350

DN 80 - 350
Q [m³/h] max. 2880
H [m] max. 170
p [bar] max. 25
T [°C] max. +70
n [min¹] max. 2900
higher values available upon request

Design: Single-stage, axially split volute casing pump for horizontal or vertical installation, with double-entry radial impeller, mating flanges to DIN, ISO, BS or ANSI.

Applications: Handling of raw, pure and service water as well as seawater in water treatment plants, irrigation and drainage pumping stations, power stations, fire-fighting systems, shipbuilding and the petrochemical industry.

A PumpExpert • Hyamaster

Reference no. 1384.5

also available in 60 Hz

RDLO

DN 350 - 700
Q [m³/h] max. 10000
H [m] max. 240
p [bar] max. 25
T [°C] max. +70
n [min¹] max. 1450
higher values available upon request

Axially split volute casing pump DN 350-700

Design: Single-stage, axially split volute casing pump for horizontal or vertical installation with double-entry radial impeller, mating flanges to DIN, ISO, BS or ANSI.

Applications: Handling of raw, pure and service water as well as seawater in water treatment plants, irrigation and drainage pumping stations, in power stations, fire-fighting systems, shipbuilding and the petrochemical industry.

A PumpExpert • Hyamaster

Doku-Nr. 1385.51/1387.5

also available in 60 Hz

Stainless steel pumps for the food industry

Vitachrom

DN 50 - 125
Q [m³/h] max. 340
H [m] max. 100
p [bar] max. 12
T [°C] max. +110
Data for 50 Hz operation

Hygienic pump in close-coupled design

Design: Easy-to-service annular casing pump, close-coupled design with standardized motor, all wetted pump parts made of stainless steel, suitability for handling foodstuffs certified by TNO according to EHEDG requirements (TNO G96-143 certificate).

Applications: Hygienic handling of fluids in the food and beverages industry and in the chemical industry.

A Hyamaster • hyatronic

Reference no. 1966.5

Pumps for power station conventional islands

CHTA / CHTC / CHTD

Boiler feed pump

DN	100 - 500
Q [m³/h]	max. 3700
H [m]	max. 5300
p [bar]	max. 560
T [°C]	max. +210
n [min ⁻¹]	max. 6750
higher values available upon request	

Design: Horizontal, high-pressure barrel-type pump with radial impellers, singleand double-entry, multistage, with flanges / weld end nozzles to DIN and ANSI. **Applications:** Handling of feed water and condensate in power stations and industrial facilities, generation of pressurized water for bark peeling machines and descaling equipment.

Reference no. 1860.1

also available in 60 Hz

Boiler feed pump

CHTR

DN	50 - 150
Q [m³/h]	max. 900
H [m]	max. 2500
p [bar]	max. 250
T [°C]	max. +400
n [min ⁻¹]	max. 7000
higher values available upon request	

Design: Horizontal, high-pressure barrel-type pump with radial impellers, singleand double-entry, multistage, with flanges / weld end nozzles to DIN, API 610 and ANSI.

 $\label{problem} \mbox{\bf Applications: In refineries, in the petrochemical industry and in steam generation plants.}$

Reference no. 2701

also available in 60 Hz

Boiler feed pump

HGB / HGC / HGD

DN	40 - 400
Q [m³/h]	max. 2300
H [m]	max. 5300
p [bar]	max. 560
T [°C]	max. +210
n [min ⁻¹]	max. 7000
higher values available upon request	

Design: Horizontal, radially split, multistage ring-section pump with radial impellers, single- or double-entry.

Applications: Hording of food water and condensate in power stations as

Applications: Handling of feed water and condensate in power stations and industrial facilities, generation of pressurized water for bark peeling machines, descaling equipment, snow guns, etc.

Reference no. 1850.02

also available in 60 Hz

Boiler feed pump

HGM

DN	25 - 100
Q [m³/h]	max. 274
H [m]	max. 1400
p [bar]	max. 140
T [°C]	max. +160
n [min ⁻¹]	max. 3600
higher values available upon request	

Design: Horizontal, radially split, product-lubricated, multistage ring-section pump with radial impellers, axial and radial single-entry inlet.

Applications: Handling of feed water in power stations, boiler feed water and condensate in industrial facilities.

A PumpExpert

Reference no. 1856.02

also available in 60 Hz

Booster pump

YNK / KRHA

DN	125 - 600
Q [m³/h]	max. 3700
H [m]	max. 280
p [bar]	max. 40
T [°C]	max. +210
n [min ⁻¹]	max. 1800
higher values available upon request	

Design: Horizontal, radially split, single-stage, double-entry boiler feed booster

pump (booster system) with single or double cast steel volute casing. **Applications:** Handling of feed water in power stations and industrial facilities.

Reference no. 1130.5

Pumps for power station conventional islands

RHD Feed water pump

DN 250 - 400
Q [m³/h] max. 6500
H [m] max. 1000
p [bar] max. 150
T [°C] max. +210
n [min¹] max. 6500
hidder values available upon request

Design: Horizontal, single-stage, double-entry feed water pump, cast and forged variant.

Applications: Handling of feed water in steam generation systems of nuclear power stations.

also available in 60 Hz

Boiler recirculation pump

LUV / LUVA / LUVB

DN 100 - 550
Q [m³/h] max. 7000
H [m] max. 275
p [bar] max. 320
T [°C] max. +420
n [min¹] max. 3600
higher values available upon request

Design: Vertical spherical casing pump, radial impellers, single-entry, single- to three-stage. Suitable for very high inlet pressures and temperatures. Integrated wet rotor motor to VDE. Product-lubricated bearings, no need for oil supply systems.

Applications: Hot water recirculation in forced-circulation, forced-flow and combined-circulation boilers for very high pressures.

Reference no. 0361.033

Design to TRD or ASME.

also available in 60 Hz

Condensate pump

WKT / WKTA / WKTB

DN 40 - 300
Q [m³/h] max. 1800
H [m] max. 340
p [bar] max. 40
T [°C] max. +100
n [min¹] max. 1800
higher values available upon request

Design: Vertical, multistage, can-type ring-section pump with radial and mixed flow impellers. Single- and double-entry suction impellers, flanges to DIN or ANSI. The can is arranged in a pit below the installation floor. The pump is connected with the structure by means of a baseplate.

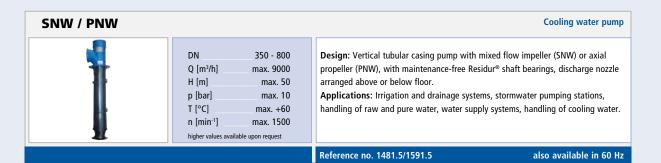
Applications: Handling of condensate in power stations and energy systems.

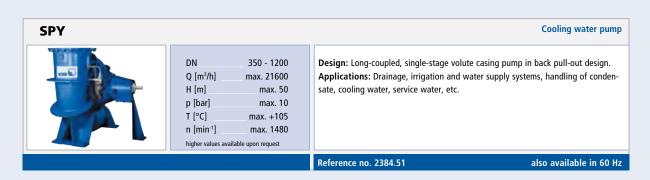
Reference no. 0361.033

also available in 60 Hz

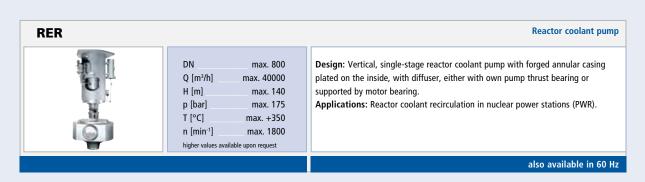
Cooling water pump

SEZ / PHZ / PNZ


DN 700 - 2400
Q [m³/h] max. 65000
H [m] max. 48
p [bar] max. 10
T [°C] max. +40
n [min¹] max. 980
higher values available ugon reguest


Design: Vertical tubular casing pump with open mixed flow impeller (SEZ), mixed flow propeller (PHZ) or axial propeller (PNZ). Pump inlet with bellmouth or suction elbow, pull-out design available, discharge nozzle arranged above or below floor, flanges to DIN or ANSI standards available.

Applications: Handling of raw, pure, service and cooling water in industry, water supply systems, in power stations and seawater desalination plants.


Reference no. 1471.02

Pumps for power station conventional islands

Pumps for power station nuclear islands

RSR		Reactor coolant pump
	DN max. 600 Q [m³/h] max. 9000 H [m] max. 215 p [bar] max. 125 T [°C] max. +310 n [min¹] max. 1800 higher values available upon request	Design: Vertical, single-stage reactor coolant pump, with cast double volute casing, supported by motor bearing. Applications: Reactor coolant recirculation in nuclear power stations (PWR, PHWR).

Pumps for power station nuclear islands

PSR Reactor internal pump

DN max. 600
Q [m³/h] max. 9000
H [m] max. 45
p [bar] max. 75
T [°C] max. +300
n [min¹] max. 2000
hidher values available upon request

Design: Vertical pump set integrated in the reactor pressure vessel, glandless pump with leak-free, low-maintenance wet motor.

Applications: Reactor coolant recirculation in boiling water reactors (BWR).

also available in 60 Hz

LUV Nuklear

DN	40 - 600
Q [m³/h]	max. 7000
H [m]	max. 300
p [bar]	max. 320
T [°C]	max. +430
higher values available upon request	

Reactor coolant / reactor water clean-up pump

Design: Vertical pump with integrated motor, single-entry, one to three stages. Suitable for very high inlet pressures and temperatures. Integrated wet rotor motor to VDE. Product-lubricated bearings, no need for oil supply systems. Design to ASME Section 3, KTA, etc.

Applications: As reactor water clean-up pump in boiling water reactors, reactor coolant pump in boiling water and pressurized water reactors, and as recirculation pump in test facilities.

also available in 60 Hz

RHM

DN	max. 150
Q [m³/h]	max. 300
H [m]	max. 2100
p [bar]	max. 220
T [°C]	max. +180
n [min ⁻¹]	max. 8000
higher values available upon request	

Pump for safety-related and auxiliary systems

Design: Horizontal, multistage barrel pull-out pump.

Applications: Core flooding, emergency cooling and residual heat removal systems, volume control systems, high-pressure charging, control rod drive systems, high- and medium-pressure safety injection systems, auxiliary feed water systems, start-up and shutdown feed water systems.

also available in 60 Hz

RVM

DN	max. 85
Q [m³/h]	max. 50
H [m]	max. 2000
p [bar]	max. 200
T [°C]	max. +100
n [min ⁻¹]	max. 6000
higher values available upon request	

Pump for safety-related and auxiliary systems

Design: Vertical, multistage barrel pull-out pump.

Applications: Core flooding, emergency cooling and residual heat removal systems, volume control systems, high-pressure safety injection systems.

also available in 60 Hz

RHR / RVR

DN	max. 500
Q [m³/h]	max. 6000
H [m]	max. 190
p [bar]	max. 63
T [°C]	max. +200
n [min ⁻¹]	max. 3600

Pump for safety-related and auxiliary systems

Design: Horizontal or vertical annular casing pump with forged pressure boundary and diffuser.

Applications: Core flooding, emergency cooling and residual heat removal systems, ancillary systems, acid feed systems and low-pressure feed systems.

Slurry pumps

WBC

Slurry Pump

Q [m³/h]	max. 13600
H [m]	max. 80
p [bar]	max. 40
T [°C]	max. +120

Design: Patented design incorporates state-of-the art hydraulic and wear technologies for heavy duty, high pressure applications. The pump shell is designed to reduce stresses that can cause a structural failure during a pressure surge. **Applications:** Ideal for ore and tailings transport to minimize the effect of sudden pressure spikes.

LSA-S

Slurry Pump

Q [m³/h]	max. 14000
H [m]	max. 90
p [bar]	max. 16
T [°C]	max. +120

Design: Premium design hard iron pumps for long wear life pumping severe slurries. The basic, single wall construction and heavy section, hard metal wet end combined with the cartridge bearing assembly provides maximum reliability and ease of maintenance.

Applications: Pumps are widely used in ore transport, mill discharge, cyclone feed, tailings and plant process.

LCC-M

Slurry Pump

Q [m³/h]	max. 3865
H [m]	max. 90
p [bar]	max. 16
T [°C]	max. +120

Design: The hydraulic wet end consists of three components: a shell or casing, an impeller and a suction plate/liner to permit easy removal for maintenance and inspections.

Applications: Reliable pumps for high discharge head, mildly corrosive slurries and a wide range of particle sizes. Used in mineral processing, mine dewatering, ash and tailings.

LCC-R

Slurry Pump

Q [m³/h]	max. 3200
H [m]	max. 50
p [bar]	max. 16
T [°C]	max. +120

Design: Interchangeable rubber and metal design allow best material choice for any application. Easy wet end change can adapt existing pumps to new applications.

Applications: Pumps are suitable for moderate discharge heads, fine particles and highly corrosive slurries.

TBC

Slurry Pump

Q [m³/h]	max. 18200
H [m]	max. 90
p [bar]	max. 55
T [°C]	max. +120

Design: High pressure design horizontal, end suction centrifugal pumps to give maximum resistance to wear while simplifying maintenance. The conventional single-wall design transfers stress loads to non-wearing side plates in high pressure applications.

Applications: Features high head and high flow rates for hydrotransport, tailings, dredging, pipeline booster stations and other severe duties.

Slurry pumps

LSR Slurry Pump

Q [m³/h]	max. 9000
H [m]	max. 60
p [bar]	max. 14
T [°C]	max. +120

Design: Extra heavy duty pumps with a high grade rubber lining for hard wearing applications. The key to the LSR's success is its endurance.

Applications: Designed for heavy duty mill circuit and fine grind slurries; specifically copper, iron ore, gold, aggregate and other abrasive applications.

LCV Slurry Pump

Q [m³/h]	max. 1360
H [m]	max. 38
p [bar]	max. 14
T [°C]	max. +120

Design: Vertical cantilever, rugged hard metal sump pump with bottom suction and no submerged bearings. Replaceable wet end parts in metal alloys and elastomer liners with a durable mechanical end.

Applications: Ideal for industrial process pumping, tailings disposal in mining and pit use.

FGD Slurry Pump

Q [m³/h]	max. 22700
H [m]	max. 45
p [bar]	max. 17
T [°C]	max. +120

Design: High-flow/low-head hard metal pumps with a single-wall shell design. High-efficiency impeller. Suction-side liner is equipped with integrated mounting plates.

Applications: Absorber recirculation and ancillary process pumps.

Mega Slurry Pump

Q [m³/h]	max. 45
H [m]	max. 30
p [bar]	max. 24
T [°C]	max. +120

Design: Horizontal, end suction, modified volute casing pump includes 3 vane open design impeller for large solids passage.

Applications: High-performance, low maintenance slurry pump recommended for coarse or fine particles from solids laden waste water to aggressive slurries of an abrasive and/or corrosive nature.

HHD Slurry Pump

Q [m³/h]	max. 14400
H [m]	max. 90
p [bar]	max. 29
T [°C]	max. +120

Design: Best suited for high flow, high head pumping where high production requires the reduction in the number of pumps.

Applications: Ideal for pipeline booster stations and severe mining duties. Also, as booster or main hull pump on cutter suction dredges.

Slurry pumps

MHD Slurry Pump

Q [m³/h] max. 32000 H [m] max. 80 p [bar] max. 28 T [°C] max. +120 **Design:** Pump for efficient pumping in a balanced range of head and flow conditions.

Applications: Ideal for pipeline booster stations and severe mining duties. Also for hopper dredges or as main pump on cutter dredges.

LHD Slurry Pump

Q [m³/h] max. 21600 H [m] max. 65 p [bar] max. 17 T [°C] max. +120 **Design:** High flow/low head design with balanced NPSHR and sphere passage for high volume transportation.

Applications: Ideal for sand & gravel, severe mining, dredge ladder and booster pumps.

MDX Slurry Pump

Q [m³/h] max. 14000 H [m] max. 90 p [bar] max. 16 T [°C] max. +120 **Design:** The latest technology from GIW provides superior wear life and increased up-time handling your most aggressive slurry applications.

Applications: Designed for SAG and ball mill discharge duties as well as cyclone feed and screen feed applications in ore mining.

Pumps and pressure exchangers for seawater desalination by reverse osmosis

SalTec® System

Q [m³/Tag]	max. 20000
p [bar]	max. 80
T [°C]	max. +40

Design: Hydraulic system for pressure boosting and energy recovery in reverse osmosis processes for seawater desalination.

Components: SalTec® DT pressure exchanger, HGM-RO high-pressure pump, RPH-RO booster pump and control unit.

Applications: Seawater desalination by reverse osmosis.

Reference no. 1858.11

SalTec® DT

Q [m³/h]	max. 280
p [bar]	max. 80
T [°C]	max. +40

Description: Pressure exchanger specially developed for use in RO seawater desalination systems, in duplex stainless steel (standard) or super duplex stainless steel (on request).

Reference no. 1858.1

RPH-RO

Booster pump

DN	25 - 400
Q [m³/h]	max. 4150
H [m]	max. 270
p [bar]	max. 104
T [°C]	max. +50
Data for 50 Hz operation	

Design: Horizontal, radially split volute casing pump, dry-installed, made of duplex stainless steel (standard) or super duplex stainless steel (on request). **Applications:** Booster pump for RO seawater desalination systems.

also available in 60 Hz

HGM-RO

High pressure pump

DN	65 - 250
Q [m³/h]	max. 1500
H [m]	max. 950
p [bar]	max. 120
T [°C]	max. +40
n [min ⁻¹]	max. 3600
higher values available upon request	

Design: Horizontal, radially-split, product-lubricated, multistage ring-section pump with radial impellers and plain bearings. Axial and radial single-entry inlet. Duplex stainless steel variant also suitable for chilled water applications. **Applications:** High-pressure pump for RO seawater desalination systems.

Reference no. 1582.12

also available in 60 Hz

Multitec-RO

High pressure pump

DN	50 - 150
Q [m³/h]	max. 850
H [m]	max. 630
p [bar]	max. 63
T [°C]	max. +40
n [min ⁻¹]	max. 3500

Design: Horizontal, multistage pump in ring-section design. Axial suction nozzle, discharge nozzle can be turned in steps of 90°. Closed radial impellers. Duplex stainless steel variant also suitable for chilled water applications.

Applications: High-pressure pump for RO seawater desalination systems.

Reference no. 1777.13

Control systems

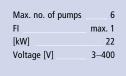
hyatronic K / N

Pump control system for cascade starting and stopping

 Max. no. of pumps
 6

 [kW]
 22

 Voltage [V]
 3~400


Design: Pump control system in control cabinet for cascade starting and stopping of up to 6 pumps run on the mains.

Applications: Water supply systems.

Reference no. 0543.5026

hyatronic S

Pump control system for continuously variable speed adjustment

Design: Pump control system in control cabinet for continuously variable speed adjustment of each pump with up to 4 pumps (6 pumps upon request) and one frequency inverter.

Applications: Heating, ventilation, air-conditioning and water supply systems.

Reference no. 0973.5

hyatronic SP

Max. no. of pur	nps 6
FI	1 per pump
[kW]	22
Voltage [V]	3~400

Pump control system for continuously variable speed adjustment

Design: Pump control system in control cabinet for continuously variable speed adjustment of each pump with up to 4 pumps (6 pumps upon request) and frequency inverters.

Applications: Heating, ventilation, air-conditioning and water supply systems.

Reference no. 0973.5

hyatronic mb

Max. no. of pumps	8
FI	max. 2
[kW]	200
Voltage [V]	3~400

Pump control system for continuously variable speed adjustment

Design: Pump control system in control cabinet for asynchronous motors of all types and makes for controlling and monitoring hydraulic systems.

Applications: Heating, ventilation and air-conditioning systems, water supply and drainage systems.

Reference no. 0974.5

Hyamaster ISB

8
x. 2
200
400

Pump control system for continuously variable speed adjustment

Design: Control system for pumps with three-phase motors of all types and makes, consisting of a KSB controller with display and control panel and all required power components.

Applications: Industrial and process engineering circuits, service water supply, cooling and lubrication, energy supply in cogeneration plants, heat transfer and district heating stations, water extraction and treatment, water supply and waste water disposal.

Reference no. 1961.5

Control systems

Hyamaster SPS

Max. no. of p	umps 4
FI	1 per pump
[kW]	650
Voltage [V]	3~400

Pump control system for continuously variable speed adjustment

Design: Control system for pumps with three-phase motors of all types and makes, consisting of a programmable logic controller (PLC) with display and control panel and all required power components housed in a control cabinet. **Applications:** Process engineering circuits, service water supply, cooling and lubrication systems, cogeneration plants, heat transfer and district heating stations, water extraction and treatment, water supply and waste water disposal.

Reference no. 1964.5

hyatronic spc

Max. no. of pumps	1
FI	max. 1
[kW]	7.5
Voltage [V]	3~400

Pump control system for continuously variable speed adjustment

Design: Single-pump control system for continuously variable speed adjustment with integrated frequency inverter.

Applications: Heating, ventilation, air-conditioning, water supply and drainage systems.

Reference no. 0973.5

PumpDrive

Max. no. o	f pumps	6
FI 1	per pump/mot	10
[kW]		45
Voltage [V]	3~380 up to 4	80

Self-cooling, motor-independent frequency inverter

Design: Self-cooling frequency inverter which allows the motor speed to be varied continuously by means of standard signals and a field bus. Because PumpDrive is self-cooling, it can be mounted on a motor, on the wall or in a cabinet. Control of up to 6 pumps without an additional controller (with PumpDrive Advanced). Applications: Cooling circuits, filters, water supply systems, heating, ventilation and air-conditioning systems, spray irrigation systems, boiler feed systems, steam generation plants, process engineering circuits, cooling lubricant supply systems, service water supply systems and other process engineering applications.

Reference no. 4070.5

UPA Control

Max. no. of pumps 1 [kW] 3 Voltage [V] 1~230 / 3~400

Control system for submersible borehole pumps

Design: Single-pump control of submersible borehole pumps, submersible motor pumps and dry-installed pumps.

Applications: Water supply systems, in combination with pumps like S 100D, UPA 150S, etc.

Reference no. 3465.1

LevelControl

Max. no. of pumps 2 [kW] max. 22 Voltage [V] 230 / 400

higher values available upon request

Level control unit

Design: Level control unit for controlling up to two pumps. Direct starting up to 4 kW, star-delta starting up to 22 kW.

Applications: Tank drainage via float switches, pneumatic or bubbler control in building services and waste water applications.

Reference no. 4040.5, 4041.5

A Automation

Control systems

Controlmatic E.2

Automatic control unit

Max. no. of pumps 1 Voltage [V] 1~230 **Design:** Single-pump control system for starting, stopping and monitoring pumps. **Applications:** Water supply systems, in combination with pumps like Multi Eco, Multichrom S, Ixo, S 100D, etc.

Reference no. 5125.1785

Cervomatic EDP

Automatic control unit

Max. no. of pumps 1 Voltage [V] 1~230 / 3~400 **Design:** Single-pump control system for pressure-controlled starting, flow-controlled stopping and monitoring of pumps.

Applications: Water supply systems, in combination with pumps like Multi Eco, Multichrom S, Ixo, S 100D, UPA 150S, etc.

Reference no. 5125.178

Monitoring and diagnostic systems

Amacontrol

Monitoring system for submersible waste water pumps

Max. no. of pumps 1
Pumps Amacan
Installation Mounting
plate IP20
Voltage 230 VAC

 $\textbf{Design:} \ \ \textbf{Monitoring system for submersible waste water pumps with shutdown.}$

Reference no. 2316.178

PumpExpert

Pump diagnostic system

Max. no. of pumps 1
Pumps see type series booklet
Installation steel housing IP54;
Compact CPU module
Voltage 24 VDC /
110/230 VAC

Design: Modular diagnostic system with memory.

Reference no. 4050.5

Automation

51

KSB Solutions

Industry

Water Waste Water

Energy

Building Services

Mining

Alternative Fuel Production

Südzucker Bioethanol GmbH Zeitz/Germany

Scope of supply and technical data:

130 pumps, some 600 butterfly valves with manual actuators and some 400 with pneumatic actuators, 150 globe and gate valves.

Pumps:

KWP O 250-560

Fluid pumped: fermented mash $Q = 906 \text{ m}^3/\text{h}$ H = 53.3 m $d = 1.045 \text{ kg/dm}^3$ t = 34 °C

CPKN/C1 250-400

decanted vinasse

 $Q = 600 \text{ m}^3/\text{h}$ H = 17.5 m $d = 1.087 \text{ kg/dm}^3$ t = 52 °C

Valves:

ISORIA 10

DN 50 – 900, PN 10, body in JS 1030, disc in stainless steel, EPDM liner

KE

DN 50 – 600, PN 10, body in JS 1025, disc in stainless steel, PFA liner

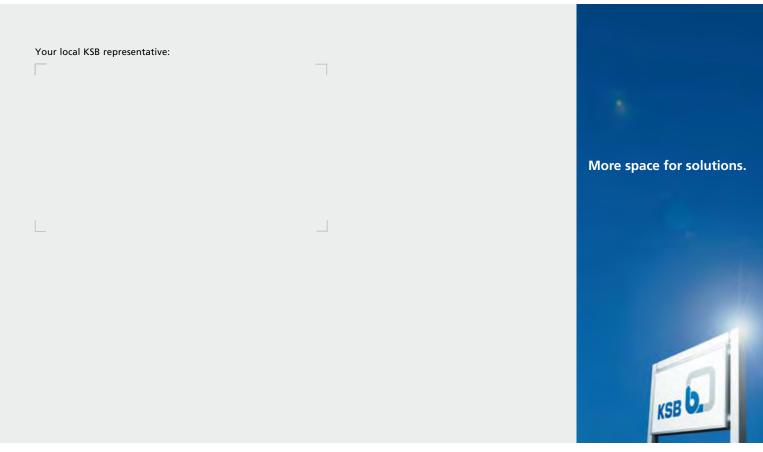
DANAÏS MT II

DN 50 - 1000, PN 16+25, stainless steel, metal-seated, leakage rate 1

All butterfly valves as per ATEX directive

Commissioned:

Beginning of 2005


Having built the biggest bioethanol facility in Europe, Südzucker Bioethanol GmbH is set to become a major player in the production of alternative fuels. This impressive plant located in Zeitz, Germany, has been equipped with pumps and valves produced by KSB. The customer's very positive experience with KSB products as well as KSB's renown as a well-established full-range supplier of pumps and valves tipped the balance in favour of KSB. Not shying away from a project of this size and complexity, our experts were once again able to demonstrate their excellent problem solving skills. As a result, roughly 130 pumps of our KWP, CPKN, Magnochem, Secochem-Ex, Etanorm and Tyamagno series as well as some 1,200 valves have been installed to smoothly handle fermented mash and decanted vinasse in the bioethanol process. Highly efficient products carefully tuned to the customer's requirements on site are our strength – a fact borne out by the intensive customer dialogue during the project phase, which rounded off our quotation. Unnecessary and cost-intensive delays could be prevented already in the project phase. A good example of KSB's excellent all-in solutions.

Should you need more information, please do not hesitate to contact me: Reinhold Höller, +49 9241 71-5200, reinhold.hoeller@ksb.com or www.ksb.com.

FAX NO. +49 9241 71-1531 We will be pleased to send you the relevant technical literature of our products. Just copy this blank form, fill in your address and order details and send it to fax no. +49 9241 71-1531. You can also simply download the complete literature via the Internet under www.ksb.com/productcatalogue. **Address** Last name First name Company Business line Water Waste Water Industry **Building Services** Energy Mining Street, house no. Place | Postal / zip code Telephone Fax | E-mail Type series literature order Reference no. Type series Yes, I am also interested in the I have some specific questions and would therefore KSB range of valves. appreciate if a member of your field staff contacted me Please send me the relevant literaby phone. ture. (You can also download this literature via the Internet.) 0570.091 Date Signature

